首页> 外文会议>IEEE Signal Processing in Medicine and Biology Symposium >Virtual musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with reinforcement learning
【24h】

Virtual musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with reinforcement learning

机译:虚拟肌肉骨骼臂和机器人臂由仿生模型的感觉运动皮层与强化学习

获取原文

摘要

Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to network connectomics. We developed a model of sensory and motor cortex consisting of several hundred spiking model-neurons. A biomimetic model (BMM) was trained using spike-timing dependent reinforcement learning to drive a simple kinematic two-joint virtual arm in a motor task requiring convergence on a single target. After learning, networks demonstrated retention of behaviorally-relevant memories by utilizing proprioceptive information to perform reach-to-target from multiple starting positions. We utilized the output of this model to drive mirroring motion of a robotic arm. In order to improve the biological realism of the motor control system, we replaced the simple virtual arm model with a realistic virtual musculoskeletal arm which was interposed between the BMM and the robot arm. The virtual musculoskeletal arm received input from the BMM signaling neural excitation for each muscle. It then fed back realistic proprioceptive information, including muscle fiber length and joint angles, which were employed in the reinforcement learning process. The limb position information was also used to control the robotic arm, leading to more realistic movements. This work explores the use of reinforcement learning in a spiking model of sensorimotor cortex and how this is affected by the bidirectional interaction with the kinematics and dynamic constraints of a realistic musculoskeletal arm model. It also paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, and used for developing biomimetic learning algorithms for controlling real-time devices. Additionally, utilizing biomimetic neuronal modeling in brain-machine interfaces offers the possibility for finer control of prosthetics, and the ability to better understand the brain.
机译:学习感觉运动控制的新皮层机制涉及多个层次的复杂相互作用,从突触机制到网络连接组学。我们开发了由数百个尖峰模型神经元组成的感觉和运动皮层模型。仿生模型(BMM)通过使用依赖于峰值定时的强化学习进行了训练,以在需要在单个目标上收敛的运动任务中驱动简单的运动型两关节虚拟手臂。学习之后,网络通过利用本体感受信息从多个起始位置执行到达目标的行为,证明了行为相关记忆的保留。我们利用该模型的输出来驱动机械臂的镜像运动。为了改善电机控制系统的生物现实性,我们用介于BMM和机器人手臂之间的逼真的虚拟肌肉骨骼手臂代替了简单的虚拟手臂模型。虚拟肌肉骨骼臂接收到来自BMM的输入,表示每个肌肉的神经兴奋。然后,它反馈了在增强学习过程中使用的逼真的本体感受信息,包括肌肉纤维长度和关节角度。肢体位置信息还用于控制机械臂,从而导致更逼真的运动。这项工作探索了在感觉运动皮层突刺模型中使用强化学习的方法,以及与实际肌肉骨骼臂模型的运动学和动态约束的双向交互如何影响强化学习的方法。它还为全闭环仿生大脑执行器系统铺平了道路,该系统可以并入神经解码器中进行假肢控制,并用于开发仿生学习算法以控制实时设备。此外,在脑机接口中利用仿生神经元建模提供了更好地控制假肢的可能性,并具有更好地了解大脑的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号