首页> 美国卫生研究院文献>other >Reinforcement Learning of Two-Joint Virtual Arm Reaching in a Computer Model of Sensorimotor Cortex
【2h】

Reinforcement Learning of Two-Joint Virtual Arm Reaching in a Computer Model of Sensorimotor Cortex

机译:感觉运动皮层计算机模型中两关节虚拟手臂伸伸的强化学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to cellular dynamics to network connectomics. We developed a model of sensory and motor neocortex consisting of 704 spiking model neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a two-joint virtual arm to reach to a fixed target. For each of 125 trained networks, we used 200 training sessions, each involving 15 s reaches to the target from 16 starting positions. Learning altered network dynamics, with enhancements to neuronal synchrony and behaviorally relevant information flow between neurons. After learning, networks demonstrated retention of behaviorally relevant memories by using proprioceptive information to perform reach-to-target from multiple starting positions. Networks dynamically controlled which joint rotations to use to reach a target, depending on current arm position. Learning-dependent network reorganization was evident in both sensory and motor populations: learned synaptic weights showed target-specific patterning optimized for particular reach movements. Our model embodies an integrative hypothesis of sensorimotor cortical learning that could be used to interpret future electrophysiological data recorded in vivo from sensorimotor learning experiments. We used our model to make the following predictions: learning enhances synchrony in neuronal populations and behaviorally relevant information flow across neuronal populations, enhanced sensory processing aids task-relevant motor performance and the relative ease of a particular movement in vivo depends on the amount of sensory information required to complete the movement.
机译:学习感觉运动控制的新皮层机制涉及多个层次的复杂相互作用,从突触机制到细胞动力学到网络连接组学。我们开发了由704个峰值模型神经元组成的感觉和运动新皮质模型。感觉和运动群体包括兴奋性细胞和两种类型的中间神经元。神经元与AMPA / NMDA和GABAA突触相互连接。我们使用依赖于尖峰时序的强化学习来训练模型,以控制两关节虚拟手臂达到固定目标。对于125个受过训练的网络中的每一个,我们使用了200次训练,每次涉及16个起始位置到达目标的15秒。学习改变了网络动力学,增强了神经元同步性和神经元之间行为相关的信息流。学习后,网络通过使用本体感受信息从多个起始位置执行到达目标的行为,证明了行为相关记忆的保留。网络根据当前手臂位置动态控制要使用哪个关节旋转来达到目标​​。依赖于学习的网络重组在感觉和运动人群中均很明显:学习的突触权重显示针对特定伸手运动进行优化的特定于目标的模式。我们的模型体现了感觉运动皮层学习的综合假设,可用于解释未来从感觉运动学习实验中体内记录的电生理数据。我们使用我们的模型做出以下预测:学习增强神经元群体的同步性和跨神经元群体的行为相关信息流,增强的感觉处理有助于与任务相关的运动表现,体内特定运动的相对难易程度取决于感觉的量完成运动所需的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号