首页> 外文会议>USNC-URSI Radio Science Meeting >Novel error-control methodology for finite difference and finite element based electrostatic green's function computation in inhomogeneous substrates
【24h】

Novel error-control methodology for finite difference and finite element based electrostatic green's function computation in inhomogeneous substrates

机译:用于有限差分和基于有限元的静电绿色函数计算的新型错误控制方法

获取原文

摘要

Electrostatic analysis of complex 3-D structures represents an indispensable design optimization tool and essential verification stage in modern electronic design automation of integrated circuit chips and packages. Maxwell capacitance matrix of multi-conductor geometries embedded in inhomogeneous substrates is among the primary quantities that an electrostatic field solver produces. Accurate knowledge of Maxwell capacitance matrix is crucial for signal integrity characterization and quantifying critical performance-related circuit features such as speed and functionality. Integral equation formulation for capacitance extraction is favored over its differential equation counterpart since its method-of-moments (MoM) or locally-corrected Nystr?m (L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, J. Comput. Phys., vol. 146, no. 2, pp. 627–663, 1998) matrix representation only involves discretizing the surface of the conductor upon the availability of the Green's function for the background medium. A finite difference method (FDM) based and high-order finite element method (HO-FEM) based electrostatic Green's function computation in planar stratified media have been introduced in (A. Cangellaris and L. Yang, IEEE Trans. Magn., vol. 37, no. 5, pp. 3133–3136, 2001) and (M. Al-Qedra and V. Okhmatovski, IEEE Int. Symp. on Antennas and Propagation and USNC-URSI Radio Science Meeting, pp. 189, 2013) respectively with several practical numerical examples. In this work, we extend both the FDM and the HO-FEM based techniques for electrostatic Green's function computation in planar stratified media to include mathematical formulation that allow for quantitative error analysis. The formulation begins with general expression of spectral domain Green's function at any point in the layered media as a sum of primary (in vicinity of source) and secondary field terms. The exact evaluation of spectral domain Green's function is compo- ed of numerically calculated term superposed with error term. Using Taylor expansion for the exponentials carrying the spectral variable and with the knowledge of the utilized numerical scheme (FDM or HO-FEM), the Taylor expansion is truncated to a finite set of polynomials corresponding to the error function. Taking the inverse Fourier-Bessel transform of the error function yields the error function with respect to location and grid size. In addition we provide three numerical comparison studies. First, developed numerical method is used to simulate for structures having known analytical solutions. Another study consists of refining the mesh (computational domain) until convergence of result is achieved according to a predefined accuracy. Moreover, the computational method is benchmarked with other gold standard software.
机译:复杂的3-d结构的静电分析表示的集成电路芯片和封装现代电子设计自动化不可缺少的设计优化工具和必要的验证阶段。嵌入在非均匀基材多导体几何形状的麦克斯韦电容矩阵是主要量中,一个静电场解算器产生。麦克斯韦电容矩阵的精确知识的信号完整性的表征和定量临界性能相关的电路的关键特性,如速度和功能。积分方程制剂电容提取自其方法-的矩(MOM)是有利的在其微分方程对方或局部校正Nystr?米(LF卡尼诺,JJ Ottusch,MA Stalzer,JL Visher和SM Wandzura,J. COMPUT 。物理学,第146卷,第2期,第627-663,1998年)的矩阵表示仅涉及在格林对于背景介质功能的可用性的导体的表面离散。基于有限差分方法(FDM),以及基于在平面分层媒体静电格林函数计算已在(A. Cangellaris和L.羊,硕士论文。MAGN。被引入高阶有限元法(HO-FEM),第二卷。 37,第5号,第3133-3136,2001)和(M.铝Qedra和V. Okhmatovski,IEEE诠释。SYMP。天线与传播和USNC-URSI无线电科学会议,第189,2013)分别与几个实际数值例。在这项工作中,我们在平面分层介质静电格林函数的计算既延长了FDM和HO-FEM为基础的技术,包括数学公式,允许定量误差分析。该制剂与频谱域格林函数的一般表达式中的层状介质开始在任意点作为主要(在源的附近)和次级场项的总和。频谱域格林函数的准确评估与误差项重叠数值计算术语的康波编辑。使用泰勒展开用于执行频谱变量的指数和与所述利用数值格式(FDM或HO-FEM)的知识,泰勒展开被截断为一个有限的集合对应于误差函数多项式。取逆傅里叶变换贝塞尔误差函数产生相对于位置和网格尺寸的误差函数。此外,我们还提供三种数值比较研究。首先,开发了数值方法用于模拟具有已知的分析解决方案的结构。另一项研究中包括细化网格(计算域),直到结果的收敛被根据预定的精度来实现的。此外,该计算方法是基准与其他黄金标准软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号