【24h】

Tuning-free step-size adaptation

机译:无关脚尺适配

获取原文

摘要

Incremental learning algorithms based on gradient descent are effective and popular in online supervised learning, reinforcement learning, signal processing, and many other application areas. An oft-noted drawback of these algorithms is that they include a step-size parameter that needs to be tuned for best performance, which may require manual intervention and significant domain knowledge or additional data. In many cases, an entire vector of step-size parameters (e.g., one for each input feature) needs to be tuned in order to attain the best performance of the algorithm. To address this, several methods have been proposed for adapting step sizes online. For example, Sutton's IDBD method can find the best vector step size for the LMS algorithm, and Schraudolph's ELK1 method, an extension of IDBD to neural networks, has proven effective on large applications, such as 3D hand tracking. However, to date all such step-size adaptation methods have included a tunable step-size parameter of their own, which we call the meta-step-size parameter. In this paper we show that the performance of existing step-size adaptation methods are strongly dependent on the choice of their meta-step-size parameter and that their meta-step-size parameter cannot be set reliably in a problem-independent way. We introduce a series of modifications and normalizations to the IDBD method that together eliminate the need to tune the meta-step-size parameter to the particular problem. We show that the resulting overall algorithm, called Autostep, performs as well or better than the existing step-size adaptation methods on a number of idealized and robot prediction problems and does not require any tuning of its meta-step-size parameter. The ideas behind Autostep are not restricted to the IDBD method and the same principles are potentially applicable to other incremental learning settings, such as reinforcement learning.
机译:基于梯度下降的增量学习算法是有效且流行于在线监督学习,强化学习,信号处理以及许多其他应用领域。这些算法的OFT缺点是它们包括需要调整的步骤大小参数以获得最佳性能,这可能需要手动干预和重要的域知识或附加数据。在许多情况下,需要调整步进参数的整个阶梯大小参数(例如,每个输入特征的传感器)以实现算法的最佳性能。要解决此问题,已提出几种方法来在线调整步骤尺寸。例如,Sutton的IDBD方法可以找到LMS算法的最佳矢量步长,而Schraudolph的ELK1方法是对神经网络的延伸,已经证明对大型应用程序有效,例如3D手跟踪。但是,迄今为止,所有此类步骤大小适配方法都包含了自己的可调步骤大小参数,我们调用元步骤大小参数。在本文中,我们表明,现有的阶梯大小适应方法的性能强烈依赖于它们的元步大小参数的选择,并且它们的元步大小参数无法以与独立问题的方式可靠地设置。我们向IDBD方法介绍了一系列修改和常规,将COMOVINATINATINE消除对特定问题调整元步骤大小参数的需要。我们表明,由此产生的整体算法,称为AutoStep,或者比在许多理想化和机器人预测问题上执行或更好地执行或更好地执行,并且不需要任何调谐其元步长参数。 AutoSTEP背后的想法不限于IDBD方法,相同的原则可能适用于其他增量学习设置,例如加强学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号