【24h】

Tuning-free step-size adaptation

机译:免调步长调整

获取原文

摘要

Incremental learning algorithms based on gradient descent are effective and popular in online supervised learning, reinforcement learning, signal processing, and many other application areas. An oft-noted drawback of these algorithms is that they include a step-size parameter that needs to be tuned for best performance, which may require manual intervention and significant domain knowledge or additional data. In many cases, an entire vector of step-size parameters (e.g., one for each input feature) needs to be tuned in order to attain the best performance of the algorithm. To address this, several methods have been proposed for adapting step sizes online. For example, Sutton's IDBD method can find the best vector step size for the LMS algorithm, and Schraudolph's ELK1 method, an extension of IDBD to neural networks, has proven effective on large applications, such as 3D hand tracking. However, to date all such step-size adaptation methods have included a tunable step-size parameter of their own, which we call the meta-step-size parameter. In this paper we show that the performance of existing step-size adaptation methods are strongly dependent on the choice of their meta-step-size parameter and that their meta-step-size parameter cannot be set reliably in a problem-independent way. We introduce a series of modifications and normalizations to the IDBD method that together eliminate the need to tune the meta-step-size parameter to the particular problem. We show that the resulting overall algorithm, called Autostep, performs as well or better than the existing step-size adaptation methods on a number of idealized and robot prediction problems and does not require any tuning of its meta-step-size parameter. The ideas behind Autostep are not restricted to the IDBD method and the same principles are potentially applicable to other incremental learning settings, such as reinforcement learning.
机译:基于梯度下降的增量学习算法在在线监督学习,强化学习,信号处理和许多其他应用领域中非常有效且受欢迎。这些算法的一个经常被注意到的缺点是它们包括一个步长参数,需要对其进行调整以获得最佳性能,这可能需要人工干预和大量领域知识或其他数据。在许多情况下,需要调整步长参数的整个向量(例如,每个输入特征一个),以实现算法的最佳性能。为了解决这个问题,已经提出了几种在线调整步长的方法。例如,萨顿(Sutton)的IDBD方法可以为LMS算法找到最佳的矢量步长,而肖劳道夫(Sraudolph)的ELK1方法(将IDBD扩展到神经网络)已被证明在诸如3D手部跟踪等大型应用中有效。但是,迄今为止,所有此类步长自适应方法都包含了自己的可调步长参数,我们将其称为meta-step-size参数。在本文中,我们证明了现有步长自适应方法的性能在很大程度上取决于其元步长参数的选择,并且它们的元步长参数不能以独立于问题的方式可靠地设置。我们对IDBD方法进行了一系列修改和规范化,从而共同消除了针对特定问题调整meta-step-size参数的需求。我们证明,在许多理想化和机器人预测问题上,所得的称为“自动步进”的整体算法在性能上优于或优于现有的步进大小自适应方法,并且不需要对其元步进大小参数进行任何调整。 Autostep背后的思想不仅限于IDBD方法,相同的原理还可能适用于其他增量学习设置,例如强化学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号