首页> 外文会议>China Semiconductor Technology International Conference >In-situ plasma monitoring of PECVD a-Si:H(i)/a-Si:H (n) surface passivation for heterojunction solar cells application
【24h】

In-situ plasma monitoring of PECVD a-Si:H(i)/a-Si:H (n) surface passivation for heterojunction solar cells application

机译:原位等离子体监测PECVD A-Si:H(i)/ a-Si:h(n)异质结太阳能电池的表面钝化应用

获取原文
获取外文期刊封面目录资料

摘要

Silicon-based solar cell manufacturing via plasma enhanced chemical vapor deposition (PECVD) of both active/passive layers is investigated. In addition, in-situ plasma diagnostics of the deposition process can be monitored in real-time. Two types of complementary diagnostics, namely optical emission spectroscopy (OES) and quadruple mass spectrometry (QMS) are applied to an PECVD reactor. Furthermore, the impact of chamber wall conditioning on the solar cell performance is experimentally investigated based on symmetrical stacks structure (a-Si:H(i) / CZ wafer (n)/ a-Si:H(i)) and the n-type hydrogenated amorphous silicon (a-Si:H) growth process conditions were optimized. Silicon heterojunction (SHJ) solar cell back surface field (BSF) layer was prepared by conventional radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) and the processing conditions in terms of the phosphine flow (1-20sccm), hydrogen dilution ratio (R=H2/SiH4) as 1-5 and symmetrical stacks structure using a (PH3/SiH4/H2/Ar) mixture were experimentally optimized. In addition, characterization of effective carrier lifetime (τeff), electrical and structure properties as well as correlation with the hydrogen dilution ratio were systematically discussed with the emphasis on the effectiveness of passivation layer. A high quality intrinsic/n-type a-Si:H layer stack BSF layer with measured effective carrier lifetime (τeff) of 1.8ms (which counts for implied Voc 0.707 V), can be consistently obtained and this improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
机译:研究了通过等离子体增强的化学气相沉积(PECVD)的基于硅的太阳能电池制造,两种主动/被动层的化学气相沉积(PECVD)。此外,可以实时监测沉积过程的原位等离子体诊断。将两种类型的互补诊断,即光发射光谱(OES)和四重质谱(QMS)施加到PECVD反应器上。此外,基于对称堆叠结构(a-si:h(i)/ cz晶片(n)/ a-si:h(i))和n-实验研究了腔室壁调节对太阳能电池性能的影响优化型氢化非晶硅(A-Si:H)生长过程条件。通过常规的射频等离子体增强的化学气相沉积(RF-PECVD)和膦稀释比,氢稀释比(RF-PECVD)和加工条件制备硅杂函数(SHJ)太阳能电池背面(BSF)层。 (R = H2 / SIH4)作为1-5和使用A(pH3 / SIH4 / H2 / AR)混合物的对称堆叠结构进行了实验优化。另外,有效载体寿命的表征(τ eff ),系统地讨论电气和结构性能以及与氢稀释比的相关性,并强调钝化层的有效性。具有测量有效载体寿命的高质量内在/ n型A-Si:H层堆叠BSF层(τ eff 可以一致地获得1.8ms(暗示VOC 0.707 V的计数),并且这种改进的钝化层可以主要归因于化学和场效应的协同作用,以显着降低表面重组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号