首页> 外文会议>ASME turbo expo >Modeling of Inlet Distortion using a Combined Turbofan and Nacelle Inlet Model during Crosswind and Low Speed Forward Operation
【24h】

Modeling of Inlet Distortion using a Combined Turbofan and Nacelle Inlet Model during Crosswind and Low Speed Forward Operation

机译:在侧风和低速前进操作过程中使用涡轮风扇和机舱进气道组合模型对进气道畸变进行建模

获取原文

摘要

Inlet distortion on turbofan nacelles during crosswind and low speed forward operation is an area of concern in the gas turbine engine community. Specifically for aft fuselage mounted nacelles, flow into the inlet is affected by the turning of the airflow at the inlet for crosswind operation, and by fuselage interference effects, such as fuselage based vortices, during low-speed forward operation.A common process of modeling airflow through a turbofan inlet in crosswind and low-speed forward operation is to model the flow boundary, at the fan leading edge location, as a static pressure boundary. For this process, the fan face is represented by a two-dimensional static pressure profile as a function of radius. This process assumes the static pressure at the fan face is uniform circumferentially. In conditions where non-axisymmetric flow effects are present at the fan boundary, such as flow separation in the inlet or local fuselage based ground vortices, an axisymmetric pressure boundary at the fan face is inappropriate. The ingestion of a fuselage based ground vortex will also impact the prediction of inlet distortion into a turbofan inlet.An improved methodology is to model the complete fan and fan stator system using a frozen rotor in a rotating reference frame. This allows the three dimensional flow effects of the fan and stator system to be better modeled within the CFD analysis by allowing the physical geometry of the modeled fan to set the flow characteristics circumferentially in the inlet.The CFD analyses were performed using two methods: (1) with airflow through the nacelle driven by a static pressure boundary at the fan face, and (2) with the fan system modeled as a frozen rotor in a rotating reference frame. The CFD results were evaluated using ARP 1419 circumferential and radial distortion descriptors (Reference 1) at the nacelle's aerodynamic interface plane location. Results from the fan system CFD analyses are compared to typical values from distortion testing and to CFD results using a static pressure profile boundary condition at the fan face. The goal of this evaluation is to combine the aircraft nacelle and the fan rotor and stator in order to model the impact of a fuselage vortex on inlet distortion where flow through the inlet is set by the fan geometry and fan speed.Initial studies on the isolated nacelle have predicted the effects of ground based vortices on the fan flow at various crosswind velocities. In the current study the effects of fuselage and ground based vortices are studied at various crosswind and head wind velocities at ground idle and takeoff operating conditions.
机译:在侧风和低速前进操作期间,涡轮风扇发动机舱的进气口变形是燃气涡轮发动机界关注的一个领域。特别是对于安装在机尾的机舱而言,进入进气口的流量受到侧风操作时进气口气流转向的影响,并受到低速前进操作期间机身干扰的影响,例如基于机身的涡旋。在侧风和低速前进运行中,通过涡轮风扇进气口的气流将在风扇前缘位置处的流边界建模为静压力边界。对于该过程,风扇表面由二维静态压力曲线表示,该曲线是半径的函数。该过程假定风扇表面的静压力在圆周上是均匀的。在风扇边界处存在非轴对称流动效应的情况下,例如进气道或基于机身的地面涡流中的流动分离,风扇表面的轴对称压力边界是不合适的。摄入基于机身的地面涡流也会影响涡轮风扇进气道进气道变形的预测。一种改进的方法是在旋转参考系中使用冷冻转子对完整的风扇和风扇定子系统进行建模。通过允许建模风扇的物理几何形状沿进气口沿圆周设置流动特性,可以在CFD分析中更好地建模风扇和定子系统的三维流动效果.CFD分析使用以下两种方法进行: 1)风扇侧面的静压边界驱动气流穿过机舱,(2)风扇系统在旋转的参考系中建模为冷冻转子。使用机舱的空气动力学界面平面位置处的ARP 1419圆周和径向变形描述符(参考文献1)评估了CFD结果。风扇系统CFD分析的结果与变形测试的典型值进行比较,并使用风扇表面的静态压力分布边界条件与CFD结果进行比较。评估的目的是将飞机机舱以及风扇转子和定子组合在一起,以模拟机身涡流对进气道变形的影响,其中通过进气道的流量由风扇的几何形状和风扇速度设定。机舱已经预测了在不同的侧风速度下,地面涡旋对风机流量的影响。在当前的研究中,在地面空转和起飞运行条件下,在各种侧风和逆风速度下,研究了机身和地面涡旋的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号