首页> 外文会议>GeoCongress 2012 >Lateral Capacity of Helical Piles - Actual vs. Theoretical Foundations for Solar Power Plants
【24h】

Lateral Capacity of Helical Piles - Actual vs. Theoretical Foundations for Solar Power Plants

机译:螺旋桩的侧向承载力-太阳能电站的实际基础与理论基础

获取原文

摘要

The construction of new solar power plants is occurring all over North America. Helical piles offer a cost effective solution for ground mount solar power plants due to their low material and production costs, fast installation in most soils, and their ability to develop sufficient uplift and lateral capacity with relatively short lengths. Structures that support solar panels are typically racks with panel mount systems supported by two to four piles. The typical size range for helical piles used for solar power plants is 3.5 to 8 inch (89 to 203 mm) diameter pipe shaft, and 7 to 15 foot (2.1 to 4.6 m) embedment depth. The helical piles are designed to resist compression, uplift, and lateral load. The axial forces are relatively small, except in areas of significant depth seasonally frozen ground or expansive soils. However, the lateral load can be significant and is typically the limiting condition for the pile design. This paper will examine the theoretical lateral capacity of helical piles based on the finite difference method used in the software program LPILE~(PLUS) by ENSOFT, Inc. LPILE is typically used for larger diameter driven piles and drilled shafts; it's validity for use with smaller pile diameters is not clear. The results of full-scale in-situ lateral load tests will be compared to the results obtained theoretically with LPILE by use of the soil parameters provided in geotechnical reports. Data from three test sites will be examined, with each soil condition being different. The results show that the actual lateral capacity based on in-situ tests is greater than what theoretical models predict, both in terms of load capacity and stiffness; regardless of the soil type. The LPILE model appears to predict better in clay and when the pile diameter increases. The possible reasons why the actual capacities are greater than the theoretical will be discussed, and what can be done to correct the theoretical models used. More research is needed to adjust the lateral capacity model so that it will provide more accurate results with respect to lateral capacity and deflection.
机译:北美各地正在兴建新的太阳能发电厂。螺旋桩由于其材料和生产成本低,可在大多数土壤中快速安装以及能够以相对较短的长度产生足够的提升力和侧向承载力而为地面安装的太阳能发电厂提供了一种经济高效的解决方案。支撑太阳能电池板的结构通常是带有由两到四个桩支撑的面板安装系统的机架。用于太阳能发电厂的螺旋桩的典型尺寸范围是直径3.5至8英寸(89至203毫米)的管轴和7至15英尺(2.1至4.6 m)的埋深。螺旋桩设计用于抵抗压缩,隆起和侧向载荷。轴向力相对较小,除了在季节性结冰的地面或膨胀土壤中深度较大的地区。但是,横向载荷可能很大,并且通常是桩设计的限制条件。本文将基于ENSOFT,Inc.软件程序LPILE〜(PLUS)中使用的有限差分法研究螺旋桩的理论侧向承载力。对于较小的桩直径使用,其有效性尚不清楚。通过使用岩土工程报告中提供的土壤参数,将进行全方位原位侧向载荷测试的结果与理论上使用LPILE获得的结果进行比较。将检查来自三个测试地点的数据,每种土壤条件都不同。结果表明,就载荷能力和刚度而言,基于原位测试的实际侧向承载力大于理论模型的预测值。不论土壤类型如何LPILE模型在粘土中以及桩直径增加时似乎可以更好地预测。将讨论实际容量大于理论容量的可能原因,以及如何纠正所使用的理论模型。需要更多的研究来调整侧向承载力模型,以便就侧向承载力和挠度提供更准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号