首页> 外文会议>Conference on photomask technology >Scanning probe microscopy study of the tolerance of patterned EUV masks to megasonic cleaning
【24h】

Scanning probe microscopy study of the tolerance of patterned EUV masks to megasonic cleaning

机译:扫描探针显微镜研究图案化EUV掩模对超音速清洁的耐受性

获取原文

摘要

EUV lithography (EUVL) is considered the most attractive solution for semiconductor device manufacturing beyond the 22nm half-pitch node. In EUVL, one of the greatest challenges is the lack of a pellicle, which makes EUV masks prone to particle contamination. Therefore, mask cleaning plays an important role in keeping masks clean during both fabrication in the mask shop and usage in the wafer fab. According to the International Technology Roadmap for Semiconductors (ITRS), in 2013 mask cleaning processes should remove all defects larger than 25nm without damaging 78nm and smaller patterns for the 23nm Flash half-pitch node [1]. In addition to contamination concerns, EUV masks introduce new materials and a multilayer structure that is different from the Cr on glass used in traditional optical masks. Physical forces applied by megasonic cleaning to remove particles on an optical mask could damage EUV mask patterns. Thus, it is important to determine the magnitude of the physical forces that can break absorber patterns (TaN or TaBN) from the surface of a Ru-capped MoSi multilayer film. The adhesion of particles of interest to the Ru-capped multilayer should also be measured. In the complex structure of an EUV mask, adhesion forces of particles on the top surface are modified by the different layers beneath the Ru. Hence, it is crucial to directly measure the force required to remove particles and break absorber patterns on EUV mask surfaces to determine the process window for applicable cleaning forces. We used scanning probe microscopy (SPM) to quantify these forces. The SPM probe was precisely controlled to remove particles and break patterns on Ru-capped EUV mask blanks. While being manipulated, the deflection signals of the probe were monitored and then converted to forces using a simple beam model. In this paper, we present the measured breakage forces for absorber patterns as a function of their size and compare them with removal forces for 50nm and 100nm SiO_2 and polystyrenelatex (PSL) particles. Based on these data and our analysis, we will demonstrate a process window for physical force that can successfully clean EUV masks beyond the 16nm half-pitch node.
机译:EUV光刻(EUVL)被认为是超越22nm半间距节点的半导体器件制造最有吸引力的解决方案。在EUVL中,最大的挑战之一是缺少防护膜,这使EUV口罩易于受到颗粒污染。因此,掩模清洗在掩模车间中的制造过程中以及晶圆厂使用中保持掩模清洁中起着重要的作用。根据国际半导体技术路线图(ITRS),2013年,掩模清洗工艺应去除大于25nm的所有缺陷,而不会损坏78nm和23nm Flash半间距节点的较小图案[1]。除污染问题外,EUV掩模还引入了新材料和多层结构,该结构不同于传统光学掩模中玻璃上的Cr。兆声波清洗施加的物理力会去除光学掩模上的颗粒,这可能会损坏EUV掩模图案。因此,重要的是确定可从Ru-覆盖的MoSi多层膜的表面破坏吸收体图案(TaN或TaBN)的物理力的大小。还应测量目标颗粒与Ru覆盖的多层膜的粘附力。在EUV掩模的复杂结构中,Ru下方的不同层会改变顶表面上粒子的附着力。因此,至关重要的是,直接测量去除颗粒并破坏EUV掩模表面上的吸收体图案所需的力,以确定适用清洁力的工艺范围。我们使用扫描探针显微镜(SPM)来量化这些力。对SPM探针进行了精确控制,以去除Ru覆盖的EUV掩模坯料上的颗粒和断裂图案。在进行操作时,将监视探头的偏转信号,然后使用简单的光束模型将其转换为力。在本文中,我们介绍了吸收体图案的测量破损力随其尺寸的变化,并将它们与50nm和100nm SiO_2和聚苯乙烯胶乳(PSL)颗粒的去除力进行比较。基于这些数据和我们的分析,我们将展示一个物理力的处理窗口,该窗口可以成功清洗16纳米半节距节点以外的EUV掩模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号