首页> 外文会议>MRS spring meeting >Protonic and Electronic Conduction in Proton Conductive Solid Oxide Fuel Cells
【24h】

Protonic and Electronic Conduction in Proton Conductive Solid Oxide Fuel Cells

机译:质子导电固体氧化物燃料电池中的质子和电子导电

获取原文

摘要

Protons can fit into the perovskite structure because the 0-0 distance is approximately that of ice. However, to achieve charge balance, -2e charge must be added for every two protons added. If O~(2-) vacancies are introduced, for instance by doping barium cerate with yttrium to obtain Ba~(2+)Ce_(1-x)~(4+)Y_x~(3+)O_(3-x/2)~(2-) (BCY), each filled vacancy will add -2e charge. Proton concentration and conductivity can be increased by exposing BCY to steam molecules, which dissociate into 2 protons and an O~(2-) ion. Our impedance spectroscopy measurements and solid oxide fuel cell (SOFC) work shows that exposure to H_2 on the anode side can add protons. This requires addition of O~(2-) ions on the cathode side from O_2 in air. Alternatively, electrons could be added because BCY is a weak electronic semiconductor. BCY is a hole conductor, and this conductivity decreases upon exposure to steam or H_2. From our analysis of V(i) curves for SOFCs with BCY electrolyte, at low H_2 concentration, increasing this concentration decreases electronic conductivity somewhat, consistent with adding electrons and reducing hole carrier concentration. At higher H_2 concentrations, electronic conductivity remains constant. Proton transfer in perovskites such as BCY resembles that in usual H-bonded crystals. Such transfer requires two steps, both needed for dc conductivity. One is intrabond proton transfer, O-H ...O→O... H-O. The other is a proton jump from one H-bond to an adjacent bond, equivalent to rotation of an O-H unit about the O ion. The main difference from usual H-bonded crystals is that the adjacent 0-0 pair most likely has no proton between the 0 ions, so that the Pauling ice rule precluding 2 protons in one bond is not much of a restriction in perovskites because the proton concentration is typically below 0.2 per formula unit. Another difference is that, though protonic semiconductor activation energies are high, in the 0.5 to 1 eV range, the high operating temperatures of SOFCs, 600 to 900 °C, give useful amounts of power per unit area, or in the electrolysis mode, useful amounts of H_2 out for steam and electric power input. Two applications for proton-conducting perovskite ceramics are SOFCs and hydrogen separation membranes (HSMs). For SOFCs, we have modeled the V(i) behavior with almost no adjustable parameters, and have succeeded in coming close to the Nernst open-circuit potential as well as fitting the V(i) curves for a variety of H_2/O_2 partial pressure combinations. For HSMs, unlike for SOFCs, an electronic conductivity comparable to the protonic conductivity is desirable, to avoid using a cermet which may crack because of differential thermal expansion. In conclusion, many oxides and fluorides have 0-0 or F-F separations in the H-bonding range and will provide a stimulating playground for further basic and applied research on proton incorporation and dynamics in solids.
机译:质子可以放入钙钛矿结构中,因为0-0的距离大约是冰的距离。但是,要实现电荷平衡,必须为每增加两个质子增加-2e电荷。如果引入O〜(2-)空位,例如通过在铈酸钡中掺入钇以获得Ba〜(2+)Ce_(1-x)〜(4+)Y_x〜(3+)O_(3-x / 2)〜(2-)(BCY),每个填补的空缺将增加-2e费用。通过将BCY暴露于蒸汽分子中可以提高质子浓度和电导率,该蒸汽分子分解成2个质子和一个O〜(2-)离子。我们的阻抗谱测量和固体氧化物燃料电池(SOFC)的工作表明,阳极侧暴露于H_2会增加质子。这需要在空气中从O_2向阴极侧添加O〜(2-)离子。或者,由于BCY是弱电子半导体,因此可以添加电子。 BCY是空穴导体,当暴露于蒸汽或H_2时,该电导率降低。根据我们对含BCY电解质的SOFC的V(i)曲线的分析,在低H_2浓度下,增加该浓度会稍微降低电子电导率,这与添加电子和降低空穴载流子浓度一致。在较高的H_2浓度下,电子电导率保持恒定。钙钛矿(例如BCY)中的质子转移类似于普通的H键合晶体中的质子转移。这种传输需要两个步骤,这两个步骤都需要直流电导率。一种是键内质子转移,O-H ... O→O ... H-O。另一个是质子从一个H键跃迁到相邻键,相当于O-H单元绕O离子旋转。与通常的氢键键合晶体的主要区别在于,相邻的0-0对极有可能在0离子之间没有质子,因此,在一个键中排除2个质子的鲍林制冰法则对钙钛矿的限制不大,因为质子浓度通常低于每个配方单位0.2。另一个不同之处在于,尽管质子半导体活化能很高,但在0.5至1 eV范围内,SOFC的高工作温度600至900°C,可提供每单位面积有用的电量,或在电解模式下,有用大量的H_2用于蒸汽和电力输入。质子传导钙钛矿陶瓷的两种应用是SOFC和氢分离膜(HSM)。对于SOFC,我们已经在几乎没有可调参数的情况下对V(i)行为进行了建模,并且成功地接近了Nernst开路电势,并且针对各种H_2 / O_2分压拟合了V(i)曲线组合。对于HSM,与SOFC不同,希望具有与质子传导率相当的电子传导率,以避免使用由于差异的热膨胀而可能破裂的金属陶瓷。总之,许多氧化物和氟化物在H键范围内具有0-0或F-F间隔,这将为进一步开展关于固体中质子结合和动力学的基础和应用研究提供刺激的场所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号