【24h】

Computational Naval Ship Hydrodynamics

机译:计算海军舰船流体动力学

获取原文

摘要

The primary purpose of our research efforts is to improve naval design and detection capabilities. Our current research efforts leverage high performance computing (HPC) resources to perform high-resolution numerical simulations with hundreds-of-millions to billions of unknowns to study wave breaking behind a transom stern, wave-impact loading, the generation of spray by high-speed planing craft, air entrainment by plunging breaking waves, forced-motion, and storm seas. This paper focuses on the air entrainment and free-surface turbulence in the flow behind a transom-stern and wave-impact loading on marine platforms. Two codes, Numerical Flow Analysis (NFA) and Boundary Data Immersion Method (BDIM), are used in this study. Both codes are Cartesian-based Large-Eddy Simulation (LES) formulations, and use either Volume-of-Fluid (VOF) (NFA) or conservative Volume-of-Fluid (cVOF) BDIM treatments to track the free-surface interface. The first project area discussed is the flow behind the transom stern. BDIM simulations are used to study the volume of entrained air behind the stern. The application of a Lagrangian bubble-extraction algorithm elucidates the location of air cavities in the wake and the bubble-size distribution for a flow that has over 10 percent void fraction. NFA simulations of the transom-stern flow are validated by comparing the numerical simulations to experiments performed at the Naval Surface Warfare Center, Carderock Division (NSWCCD), where good agreement between simulations and experiments is obtained for mean elevations and regions of white water in the wake. The second project area discussed is wave impact loading, a topic driven by recent structural failures of high-speed planing vessels and other advanced vehicles, as well as the devastation caused by Tsunamis impacting low-lying coastal areas. NFA simulations of wave breaking events are compared to the NSWCCD cube impact experiments and the Oregon State University, O.H. Hinsdale Wave Research L--aboratories Tsunami experiments, and it is shown that NFA is able to accurately simulate the propagation of waves over long distances after which it also accurately predicts highly-energetic impact events.
机译:我们研究工作的主要目的是提高海军的设计和侦察能力。我们目前的研究工作是利用高性能计算(HPC)资源,对成千上万至数十亿个未知数进行高分辨率的数值模拟,以研究船尾尾部的波浪破碎,波浪冲击载荷,高强度水雾的产生。速滑艇,猛烈的浪潮夹带空气,强行运动和暴风雨海。本文重点研究海洋平台上尾部尾部和波浪冲击载荷背后的气流中的空气夹带和自由表面湍流。在这项研究中使用了两个代码,数值流分析(NFA)和边界数据浸入方法(BDIM)。这两个代码都是基于笛卡尔的大涡模拟(LES)公式,并使用流体体积(VOF)(NFA)或保守流体体积(cVOF)BDIM处理来跟踪自由表面界面。讨论的第一个项目区域是尾板船尾的水流。 BDIM模拟用于研究船尾后面的夹带空气量。拉格朗日气泡提取算法的应用阐明了尾流中空气腔的位置以及空隙率超过10%的流的气泡大小分布。通过将数值模拟与卡德洛克分部海军水面作战中心(NSWCCD)进行的实验进行比较,验证了横尾流的NFA模拟,在模拟和实验之间,对于平均水位和白水区域,白水得到了很好的一致性。唤醒。讨论的第二个项目领域是波浪冲击载荷,这个话题是由高速滑行船和其他先进车辆的近期结构性故障以及海啸袭击低洼沿海地区造成的破坏性驱动的。将NFA模拟的破波事件与NSWCCD立方体碰撞实验以及俄勒冈州立大学(Oregon State University,OH)进行了比较。欣斯代尔波浪研究L- -- 海啸实验证明,NFA能够准确模拟长距离波的传播,之后还能准确预测高能量的撞击事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号