【24h】

Computational Naval Ship Hydrodynamics

机译:计算海军流动动力学

获取原文

摘要

The primary purpose of our research efforts is to improve naval design and detection capabilities. Our current research efforts leverage high performance computing (HPC) resources to perform high-resolution numerical simulations with hundreds-of-millions to billions of unknowns to study wave breaking behind a transom stern, wave-impact loading, the generation of spray by high-speed planing craft, air entrainment by plunging breaking waves, forced-motion, and storm seas. This paper focuses on the air entrainment and free-surface turbulence in the flow behind a transom-stern and wave-impact loading on marine platforms. Two codes, Numerical Flow Analysis (NFA) and Boundary Data Immersion Method (BDIM), are used in this study. Both codes are Cartesian-based Large-Eddy Simulation (LES) formulations, and use either Volume-of-Fluid (VOF) (NFA) or conservative Volume-of-Fluid (cVOF) BDIM treatments to track the free-surface interface. The first project area discussed is the flow behind the transom stern. BDIM simulations are used to study the volume of entrained air behind the stern. The application of a Lagrangian bubble-extraction algorithm elucidates the location of air cavities in the wake and the bubble-size distribution for a flow that has over 10 percent void fraction. NFA simulations of the transom-stern flow are validated by comparing the numerical simulations to experiments performed at the Naval Surface Warfare Center, Carderock Division (NSWCCD), where good agreement between simulations and experiments is obtained for mean elevations and regions of white water in the wake. The second project area discussed is wave impact loading, a topic driven by recent structural failures of high-speed planing vessels and other advanced vehicles, as well as the devastation caused by Tsunamis impacting low-lying coastal areas. NFA simulations of wave breaking events are compared to the NSWCCD cube impact experiments and the Oregon State University, O.H. Hinsdale Wave Research L- - aboratories Tsunami experiments, and it is shown that NFA is able to accurately simulate the propagation of waves over long distances after which it also accurately predicts highly-energetic impact events.
机译:我们的研究努力的主要目的是提高海军设计和检测能力。我们目前的研究努力利用高性能计算(HPC)资源来执行数十亿万千万个未知数数十亿的数字模拟,以研究横梁船尾,波浪冲击载荷,喷雾产生的浪潮速度刨花工艺,空气夹带通过陷入困境,强制动作和风暴海洋。本文重点介绍了在船上平台上的横梁船尾和波浪冲击载荷后面的流动夹带和自由表面湍流。在本研究中使用了两种代码,数值流分析(NFA)和边界数据浸入方法(BDIM)。两种代码都是基于笛卡尔的大涡模拟(LES)制剂,并使用流体体积(VOF)(NFA)或保守的流体体积(CVOF)BDIM处理来跟踪自由表面界面。讨论的第一个项目区域是横梁后面的流动。 BDIM模拟用于研究船尾后面的夹带空气量。拉格朗日泡沫提取算法的应用阐明了尾脉中的空气腔的位置,以及具有超过10%空隙率的流动的气泡尺寸分布。通过将数值模拟与在海军地面战中心(NSWCCD)进行的实验比较,验证了横梁船尾流量的NFA模拟,其中模拟和实验之间的良好一致性,为平均升高和地区的白水唤醒。讨论的第二个项目区域是波冲冲击,这是由最近的高速刨船和其他先进车辆的结构故障驱动的主题,以及海啸影响低洼沿海地区引起的破坏。与NSWCCD立方体影响实验和俄勒冈州立大学,O.H.的NFA模拟波浪事件模拟。 Hinsdale波浪研究L-对手Tsunami实验,结果表明,NFA能够准确地模拟波浪在长距离长途的传播之后,它还准确地预测高度能量的影响事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号