首页> 外文会议> >A ghost cell immersed boundary method coupled with Aitken Schwarz DDM for computation of Liquid-Liquid Phase Fronts on Fixed Grids
【24h】

A ghost cell immersed boundary method coupled with Aitken Schwarz DDM for computation of Liquid-Liquid Phase Fronts on Fixed Grids

机译:结合Aitken Schwarz DDM的重影单元浸没边界方法,用于计算固定网格上的液相液相

获取原文
获取原文并翻译 | 示例

摘要

Problems with moving interfaces are usual in computational fluid dynamics for different domains of applications such as fluid-structure interaction problems, frontal polymerization problems, hemodynamics problems, sea pollution by oiled problems... . This paper will detail the first steps to build a computational library that can handle such problems with a module oriented approach that domain decomposition and code coupling provide. Since the targeted computing architecture will be the grid, we focus on domain decomposition numerical methods that are tolerant to low bandwidth and high latencies as the Aitken-Schwarz method developed in [3] and that performs well in metacomputing framework as shown in [1] with a 5 Mbit/s ethernet network. First we concentrate on the space discretization associated with the domain decomposition generated by the moving interface. The numerical solution of flow for fluids separated by a moving interface, in order to track liquid-liquid boundaries on a fixed underlying grid constitutes our first test problem to define the methodologies. Our approach consists to combine two numerical techniques to handle the interface movement. First, following a methodology proposed by Udaykumar & al.[5], the interface tracking where the interface is not considered to be of finite thickness but is treated as a discontinuity and is explicitly tracked. Second the Ghost Cell Immersed Boundary Method (IBM) of Tseng & Ferziger where the boundary conditions on a sharp interface is taken in account exactly through some ghost cells nodes in the vicinity of the interface, leading to a coefficient stencil readjustment. This approach seems for us to fit the grid computing architecture as only the knowledge of the interface position is needed. The load balancing consideration of structured mesh is for us more reachable than re-meshing techniques.
机译:在不同应用领域的计算流体动力学中,通常存在移动界面问题,例如流体-结构相互作用问题,额叶聚合问题,血液动力学问题,含油问题对海洋的污染...。本文将详细介绍构建计算库的第一步,该库可以使用域分解和代码耦合提供的面向模块的方法来处理此类问题。由于目标计算体系结构将是网格,因此我们专注于域分解数值方法,如[3]中开发的Aitken-Schwarz方法,该方法可容忍低带宽和高延迟,并且在[1]中所示的元计算框架中表现良好使用5 Mbit / s的以太网网络。首先,我们专注于与运动界面生成的域分解相关的空间离散化。为了跟踪通过固定界面网格上的液-液边界而由运动界面分离的流体的数值解,构成了我们定义方法的第一个测试问题。我们的方法包括结合两种数值技术来处理界面运动。首先,遵循Udaykumar等人[5]提出的方法,对界面进行跟踪,其中不认为界面具有有限的厚度,而是将其视为不连续性并进行了明确跟踪。其次,Tseng&Ferziger的Ghost Cell沉浸式边界方法(IBM),其中精确地考虑了锐角界面上的边界条件是通过该界面附近的一些ghost cell节点进行的,从而导致系数模版重新调整。对于我们来说,这种方法似乎适合于网格计算体系结构,因为只需要了解接口位置即可。对我们而言,结构化网格的负载均衡考虑比重新网格化技术更容易实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号