首页> 外文会议>ASME Pressure Vessels and Piping Division/K-PVP conference;PVP2010 >HEATPIPE/THERMOSYPHON AUGMENTED MANDRELS TO IMPROVE CURE QUALITY AND TO REDUCE CURE TIME IN THE THERMOSET PIPE AND TUBE FILAMENT WINDING PROCESS
【24h】

HEATPIPE/THERMOSYPHON AUGMENTED MANDRELS TO IMPROVE CURE QUALITY AND TO REDUCE CURE TIME IN THE THERMOSET PIPE AND TUBE FILAMENT WINDING PROCESS

机译:HEATPIPE / Termosphon增强型模芯可提高热管和管丝缠绕过程中的固化质量并缩短固化时间

获取原文

摘要

Mandrels used in conventional filament winding processes for the production of (GFRP) fiberglass pipe are generally not actively heated. Mandrels, after being overwrapped by continuous bands of filaments impregnated with uncured resin, are then passively and indirectly heated as the resin/fiber matrix covering them is cured. Curing occurs by placing the mandrel and uncured laminate assembly in a convection oven or by radiating the mandrel/uncured laminate assembly with infrared heat energy for a period of time at elevated temperature to affect a cure of the composite laminate. Typically mandrels are rotated during cure to assure homogenous resin consistency within the matrix.When processed in this fashion, mandrels are typically the least heated part of the assembly; the heat energy being applied only to the outside surface of the uncured resin/fiberglass matrix. The energy thus applied must then be conducted first through the wall of the composite laminate. The laminate tends to be thermally insulative as it cures. Therefore the cure of the resin matrix occurs without any significant thermal input from the mandrel. Significant time and energy are required to bring the temperature of the mandrel and the inner surface of the laminate to a temperature which assures an optimum cure.A new application of a mature aerospace derived heat transfer technology now provides uniform, controllable and discrete energy to the mandrel. Mandrels incorporating this technology exhibit near isothermal temperatures, random point to point, on the mandrel surface. These temperatures can be set and controlled from below ambient to 220°C.Heatpipe technology provides these mandrels with essentially super thermal conductive characteristics due to the latent heat phase change heat transfer methodology used withinthem. Mandrels incorporating heatpipe technology absorb energy based on any localized energy input and transfer that absorbed energy throughout the mandrel in an isothermal manner. This super thermally conductive property provides additional uniform heat to the mandrel surface covered by the uncured resin matrix. When the necessary thermal energy input is provided, the mandrel now transfers that energy as heat uniformly throughout the mandrel surface. The mandrel, now being actively heated, lends that thermal energy to the cure sequence by heating the uncured resin/fiberglass matrix in contact with the mandrel's surface. This extra energy provided to I.D. surface of the laminate results in a shorter duration cure due to an increase in the surface area actively being heated.Heatpipe thermally enhanced (HPTE); mandrels not only have characteristics described above but also permit the use of increased thermal energy throughputs which provide thermal energy transfer rates, unachievable with existing processes.. This increased heat transfer rate can result in a further reduction of the cure cycle.When coupled with an induction power supply and induction coil, these HPTE mandrels can be heated directly while rotating. The induction power absorbed by these HPTE mandrels is of a magnitude that permits resin matrices to be cured entirely from the mandrel side or "inside out" without the need for a convection or infrared oven.
机译:用于生产(GFRP)玻璃纤维管的传统灯丝绕组工艺中使用的心轴通常不会被主动加热。然后通过浸渍未固化树脂的连续长带被覆盖的连续带覆盖后的心轴,随着覆盖它们的树脂/纤维基质,被动和间接地加热。通过将心轴和未固化的层压材料组件放置在对流烘箱中或通过在升高的温度下将心轴和未固化的层压组件放置在对流烘箱中或通过红外热能将心轴/未固化的层压组件辐射,以影响复合层压板的固化。通常在固化期间旋转心轴以确保基质内的均匀树脂稠度。 当以这种方式处理时,心轴通常是组装的最少的加热部分;热能仅施加到未固化树脂/玻璃纤维基质的外表面。因此,必须首先通过复合层压板的壁进行所施加的能量。随着IT的固化,层压材料往往是热绝缘的。因此,树脂基质的固化发生而没有从心轴的任何显着的热输入。需要显着的时间和精力来使心轴的温度和层压板的内表面达到保证最佳固化的温度。 成熟航天衍生传热技术的新应用现在为心轴提供均匀,可控和离散的能量。将该技术的心轴展示在等温温度附近,随机点到点,在心轴表面上。可以将这些温度从下方设定和控制到220℃。 热管技术为这些心轴提供基本上超大的导热特性,由于内部使用的潜热相变传热方法 他们。结合热管技术的心轴基于任何局部能量输入和转移以等温的方式在整个心轴上吸收能量的转移来吸收能量。该超极导电性能为由未固化的树脂基质覆盖的心轴表面提供额外的均匀热量。当提供必要的热能输入时,心轴现在将该能量转移为在整个心轴表面均匀的热量。现在正在积极加热心轴,通过加热未固化的树脂/玻璃纤维基质与心轴表面接触来赋予固化序列的热能。提供给I.D的额外能量。由于主动加热的表面积增加,层压材料的表面导致持续时间较短。 热管热增强(HPTE);心轴不仅具有上述特性,而且还允许使用提供热能传递速率的增加的热能吞吐量,与现有过程无法实现。这种增加的传热速率可能导致固化循环的进一步减少。 当与感应电源和感应线圈耦合时,这些HPTE心轴可以在旋转时直接加热。这些HPTE心轴吸收的感应功率是一种幅度,其允许树脂基质完全从心轴侧或“内部外面”固化,而无需对流或红外炉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号