【24h】

Specific heat in nanostructures by quantum mechanics

机译:量子力学中纳米结构的比热

获取原文

摘要

Specific heat is thought to be an intensive thermophysical property of a material independent of the dimensions of the body. Today, specific heat at the nanoscale is assumed the same as that of macroscopic bodies. In effect, the classical equipartition theorem of statistical mechanics is assumed at the nanoscale allowing atoms to have heat capacity at all thermal wavelengths. Therefore, classical physics allows submicron wavelengths that can “fit inside” nanostructures to conserve electromagnetic (EM) energy by an increase in temperature. Quantum mechanics (QM) also allows the atom to have heat capacity at submicron wavelength, but only at high temperature. At ambient temperature, the high frequency modes at submicron wavelengths are therefore “frozen out” leaving nanostructures without the heat capacity to increase in temperature to conserve absorbed EM energy. By QM, specific heat vanishes at the nanoscale. Conservation may only proceed by the quantum electrodynamics (QED) induced creation of photons within the nanostructure at a frequency equal to its fundamental EM resonance. Subsequently, QED radiation leaks to the surroundings. Specific heat at the nanoscale is therefore not an intensive property of a material, but rather an extensive property depending on the body dimensions.
机译:比热被认为是一种与身体尺寸无关的强烈的热物理性质。如今,假设纳米级的比热与宏观物体的比热相同。实际上,假设统计力学的经典等分定理是在纳米尺度上进行的,从而使原子在所有热波长下都具有热容。因此,经典物理学允许亚微米波长能够“适合”纳米结构,从而通过温度升高来节省电磁(EM)能量。量子力学(QM)还允许原子在亚微米波长下具有热容,但仅在高温下才具有。因此,在环境温度下,“冻结”了亚微米波长的高频模式,从而使纳米结构没有热容量,无法提高温度以节省吸收的EM能量。通过QM,比热在纳米级消失了。保守只能通过量子电动力学(QED)在纳米结构内以等于其基本EM共振的频率诱导光子的产生来进行。随后,QED辐射泄漏到周围环境。因此,纳米级的比热不是材料的强化性质,而是取决于身体尺寸的广泛性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号