首页> 外文会议>2010 IEEE International Conference on Progress in Informatics and Computing >An improved multi-population genetic algorithm for job shop scheduling problem
【24h】

An improved multi-population genetic algorithm for job shop scheduling problem

机译:改进的多种群遗传算法求解作业车间调度问题

获取原文

摘要

This paper introduces “population migration” idea and proposes an improved multi-population genetic algorithm based on population migration, which differed from tradition multi-population genetic algorithms that only improve the crossover and mutation operator. The new algorithm provides a population adjusting strategy based on population migration to adjust the population size automatically. Firstly, the algorithm divides the initial population into some subpopulations and performs different genetic algorithms on different subpopulations. Secondly, it evaluates the favorable index of each subpopulation after some runtime. Then, it makes some chromosome moving to the subpopulation with high favorable index to continue to evolve. Finally, when the population has a phenomenon of local value, the algorithm makes the chromosome in this population diffuse to different population to search a new global best value. The new algorithm is experimented with the Muth and Thompson standard problem, and the result of the experiment shows the convergence capability and ability to solve the precocity of the new algorithm is improved sharply.
机译:本文介绍了“种群迁移”的思想,并提出了一种基于种群迁移的改进的种群遗传算法,该算法不同于仅改进交叉和变异算子的传统种群遗传算法。新算法提供了基于人口迁移的人口调整策略,以自动调整人口规模。首先,该算法将初始种群分为一些亚群,并对不同的亚群执行不同的遗传算法。其次,它会在运行时间后评估每个子群体的有利索引。然后,它使一些染色体移动到具有高有利指数的亚种群继续进化。最后,当种群具有局部值现象时,该算法使该种群中的染色体扩散到不同种群中,以寻找新的全局最佳值。对新算法进行了Muth和Thompson标准问题的实验,实验结果表明该算法的收敛能力和解决早熟性的能力得到了明显提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号