首页> 外文会议>Conference on alternative lithographic technologies >Full Chip Characterization of Compression Algorithms for Direct Write Maskless Lithography Systems
【24h】

Full Chip Characterization of Compression Algorithms for Direct Write Maskless Lithography Systems

机译:直接写入无掩模光刻系统的压缩算法的全芯片特性

获取原文

摘要

Future lithography systems must produce more dense microchips with smaller feature sizes, while maintaining throughput comparable to today's optical lithography systems. This places stringent data-handling requirements on the design of any maskless lithography system. Today's optical lithography systems transfer one layer of data from the mask to the entire wafer in about sixty seconds. To achieve a similar throughput for a direct-write maskless lithography system with a pixel size of 22 nm, data rates of about 12 Tb/s are required. Over the past 8 years, we have proposed a datapath architecture for delivering such a data rate to a parallel array of writers. Our proposed system achieves this data rate contingent on two assumptions: consistent 10 to 1 compression of lithography data, and implementation of real-time hardware decoder, fabricated on a microchip together with a massively parallel array of lithography writers, capable of decoding 12 Tb/s of data.To address the compression efficiency problem, in the past few years, we have developed a new technique, Context Copy Combinatorial Coding (C4), designed specifically for microchip layer images, with a low-complexity decoder for application to the datapath architecture. C4 combines the advantages of JBIG and ZIP, to achieve compression ratios higher than existing techniques. We have also devised Block C4, a variation of C4 with up to hundred times faster encoding times, with little or no loss in compression efficiency. While our past work has focused on characterizing the compression efficiency of C4 and Block C4 on samples of a variety of industrial layouts, there has been no full chip performance characterization of these algorithms. In this paper, we show compression efficiency results of Block C4 and competing techniques such as BZIP2 and ZIP for the Poly, Active, Contact, Metal 1, Vial, and Metal2 layers of a complete industry 65 nm layout.Overall, we have found that compression efficiency varies significantly from design to design, from layer to layer, and even within parts of the same layer. It is difficult, if not impossible, to guarantee a lossless 10 to 1 compression for all blocks within a layer, as desired in the design of our datapath architecture. Nonetheless, on the most complex Metal 1 layer of our 65 nm full chip microprocessor design, we show that a average lossless compression of 5.2 is attainable, which corresponds to a throughput of 60 wafer layers per hour for a 1.33 Tb/s board-to-chip communications link. As a reference, state-of-the-art HyperTransport 3.0 offers 0.32 Tb/s per link. These numbers demonstrate the role lossless compression can play in the design of a maskless lithography datapath.
机译:未来的光刻系统必须生产出具有更小特征尺寸的密度更高的微芯片,同时保持与当今的光学光刻系统相当的吞吐量。这对任何无掩模光刻系统的设计提出了严格的数据处理要求。当今的光学光刻系统在大约60秒内将一层数据从掩模传输到整个晶圆。为了对于具有22 nm像素大小的直接写入式无掩模光刻系统实现类似的吞吐量,需要大约12 Tb / s的数据速率。在过去的8年中,我们提出了一种数据路径体系结构,用于将这样的数据速率传递给并行的写入器数组。我们提出的系统在两个假设的基础上实现此数据速率:对光刻数据进行10到1的一致压缩,以及在微芯片上制造的实时硬件解码器以及大规模并行的光刻写入器阵列,能够解码12 Tb / b的实时硬件解码器。的数据。 为了解决压缩效率问题,在过去的几年中,我们开发了一种新技术,即上下文复制组合编码(C4),该技术专为微芯片层图像设计,并具有低复杂度解码器,可应用于数据路径体系结构。 C4结合了JBIG和ZIP的优点,以实现比现有技术更高的压缩率。我们还设计了Block C4,它是C4的一种变体,具有高达一百倍的编码时间,而压缩效率几乎没有损失。尽管我们过去的工作集中在表征各种工业布局的样本上C4和Block C4的压缩效率,但这些算法还没有完整的芯片性能表征。在本文中,我们展示了块C4的压缩效率结果以及竞争性技术(例如BZIP2和ZIP)用于完整工业65 nm布局的Poly,Active,Contact,Metal 1,Vial和Metal2层的结果。 总的来说,我们发现压缩效率在不同的设计之间,不同的层之间甚至在同一层的各个部分之间都存在显着差异。正如我们的数据路径体系结构的设计所希望的那样,很难甚至不可能保证一层中所有块的无损压缩比为10:1。尽管如此,在我们65纳米全芯片微处理器设计中最复杂的金属1层上,我们显示平均无损压缩为5.2,相当于以1.33 Tb / s的板载时每小时可生产60个晶片层。芯片通信链接。作为参考,最新的HyperTransport 3.0每条链路提供0.32 Tb / s的速度。这些数字表明,无损压缩可以在无掩模光刻数据路径的设计中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号