首页> 外文会议>International astronautical congress;IAC 2009 >THE POTENTIAL AND ION VELOCITY DISTRIBUTION IN HALL THRUSTERS
【24h】

THE POTENTIAL AND ION VELOCITY DISTRIBUTION IN HALL THRUSTERS

机译:霍尔推力器中的电位和离子速度分布

获取原文

摘要

Hall effect thrusters represent an efficient form of electric propulsion devices in which ions are accelerated by an electric field and used as major propellant. Hall thrusters are able to perform better than chemical propulsion systems because Hall thrusters can create higher specific impulse and do not need to carry any oxidizer, so allow a larger payload.Experimental investigation of the magnetic fields distribution within Hall thrusters shows that the radial component is dominant. However, it was found in experiments that under certain operating conditions a distinctive jet-like potential structure developed in the Hall thruster channel. In other words, the potential distribution deviates from the magnetic field profile and the peak of the electric field is shifted downstream of the exit plane. This structure may result in a significant divergence of beam ions as they are accelerated out of the thruster. Therefore, prediction of the potential and ion velocity distribution is very important in develop electric propulsion devices.In this study, a kinetic model of the plasma in a Hall thruster channel is developed which takes into account the magnetic field. The model is an attempt to explain the experimentally found non-uniform potential distribution and predict the ion velocity across the thruster channel. Two dimensional particle simulation of an SPT type Hall thruster channel plasma is investigated using VORPAL, a PIC-DSMC code developed at Tech-X. For thruster channel plasma simulation, the direct simulation Monte Carlo (DSMC) methods simulates the collisions of particles (electron, ions and atoms) and the Particle-In-Cell (PIC) technique models the transport of ions and electrons in electric fields. All particles are treated kinetically.
机译:霍尔效应推进器代表了一种电力推进装置的有效形式,其中离子被电场加速并用作主要推进剂。霍尔推力器的性能优于化学推进系统,因为霍尔推力器可以产生更高的比冲,并且不需要携带任何氧化剂,因此允许更大的有效载荷。 对霍尔推进器内的磁场分布进行的实验研究表明,径向分量占主导地位。但是,在实验中发现,在某些操作条件下,霍尔推进器通道中会形成独特的喷射状电位结构。换句话说,电势分布偏离磁场轮廓,并且电场的峰值在出射平面的下游移动。当束离子从推进器中加速出来时,这种结构可能会导致束离子的明显发散。因此,电势和离子速度分布的预测对于开发电动推进装置非常重要。 在这项研究中,建立了霍尔推力器通道中等离子体的动力学模型,该模型考虑了磁场。该模型试图解释实验发现的不均匀电势分布,并预测穿过推进器通道的离子速度。使用VORPAL(一种由Tech-X开发的PIC-DSMC代码)研究了SPT型霍尔推力器通道等离子体的二维粒子模拟。对于推进器通道等离子体模拟,直接模拟Monte Carlo(DSMC)方法模拟粒子(电子,离子和原子)的碰撞,而Cell-In-Cell(PIC)技术则模拟电场中离子和电子的传输。所有颗粒均经过动力学处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号