【24h】

Low-Power Feedback-Enhanced Electro-mechanical Impedance (FEMI) Sensors

机译:低功耗反馈增强的机电阻抗(FEMI)传感器

获取原文
获取外文期刊封面目录资料

摘要

Electro-mechanical impedance (EMI) method utilizing smart piezoelectric sensors has emerged as a promising technology for structural health monitoring in civil, mechanical and aerospace engineering. However, two major limiting factors have prevented field deployment of this method in real life. First, smart piezoelectric sensors, such as Lead Zirconate Titanate (PZT) patches, are highly sensitive to environmental changes such as temperature, humidity, and vibration. Secondly, bulky and expensive equipment is needed for performing impedance measurement. This paper proposes a feedback-enhanced electro-mechanical impedance (FEMI) technique for improving robustness against environmental variations and a design of a low-power EMI sensor with built-in measurement circuitries based on this new technique. The proposed FEMI technique employs a feedback scheme to amplify the peaking characteristics of the natural resonance frequencies in the EMI frequency response. The feedback loop includes a phase-locked loop (PLL) and a transimpedance amplifier (TIA). An analog EMI measurement circuit is developed to replace bulky EMI measurement instruments. To keep the power consumption low, the proposed system does not require any analog-to digital conversion or DSP circuit blocks, but uses a simple analog mixer to multiply input and output waveforms of the PZT sensor, and then extract the EMI amplitude by passing the mixer output through a low-pass filter (LPF). The performance of the proposed FEMI sensor is verified by simulations using MATLAB. Simulated natural frequency peaks in the EMI spectrum are noticeably sharper with the feedback scheme than the one without feedback. As a result, the natural frequency shift due to any structural change can be more easily detected. To quantify the shift of these natural frequency peaks, the root mean square deviation (RMSD) of the difference between cases with and without damage is calculated. The simulation results show that the RMSD with feedback is greater than the RMSD without feedback by a factor of 3.2, when the damage is emulated by a 30% decrease in stiffness. This result confirms that the FEMI technique with the proposed EMI measurement circuits can detect structural damage with higher sensitivity compared to existing methods. Our future goal is to build a prototype for the FEMI sensors and integrate all the circuitries in a single CMOS chip.
机译:利用智能压电传感器的机电阻抗(EMI)方法已成为民用,机械和航空航天工程中结构健康监测的有希望的技术。然而,两个主要限制因素阻止了这种方法在现实生活中部署了这种方法。首先,智能压电传感器,例如铅锆钛酸铅(PZT)贴片,对环境变化高度敏感,如温度,湿度和振动。其次,需要笨重和昂贵的设备进行阻抗测量。本文提出了一种反馈增强的机电阻抗(FEMI)技术,用于改善与基于该新技术的内置测量电路的对环境变化的鲁棒性和低功耗EMI传感器的设计。所提出的FEMI技术采用反馈方案来放大EMI频率响应中的自然谐振频率的峰值特性。反馈回路包括锁相环(PLL)和跨阻抗放大器(TIA)。开发模拟EMI测量电路以取代庞大的EMI测量仪器。为了保持低功耗低,所提出的系统不需要任何模数转换或DSP电路块,而是使用简单的模拟混频器来乘以PZ​​T传感器的输入和输出波形,然后通过传递EMI幅度提取EMI幅度通过低通滤波器(LPF)输出混频器。通过使用MATLAB模拟验证所提出的FEMI传感器的性能。模拟EMI频谱中的自然频率峰值明显更锐化,反馈方案比没有反馈的反馈方案。结果,可以更容易地检测到由于任何结构变化引起的自然频移。为了量化这些固有频率峰值的偏移,计算具有和无损坏的情况之间的差异的根均方偏差(RMSD)。仿真结果表明,当损坏刚度下降时,反馈的RMSD具有大于3.2的反馈而没有反馈的RMSD。该结果证实,与所提出的EMI测量电路的FEMI技术可以检测与现有方法相比具有更高灵敏度的结构损伤。我们未来的目标是为Femi传感器构建原型,并将所有电路集成在单个CMOS芯片中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号