首页> 外文会议>Conference on Metrology, Inspection, and Process Control for Microlithography XXI pt.1 >Quantification of Two-Dimensional Structures Generalized for OPC Model Verification
【24h】

Quantification of Two-Dimensional Structures Generalized for OPC Model Verification

机译:用于OPC模型验证的二维二维结构的量化

获取原文

摘要

Model based optical proximity correction (OPC) today has become a necessity in advanced lithography for 65nm and 45nm design rules in order to achieve production-worthy pattern fidelity. The typical practice is to use a limited set of test structures to calibrate and determine the OPC model parameters. The guide for the selection of test structures for OPC model calibration has been mainly relied on experience and physical intuition. To date, there is no known quantification methodology to ensure that the calibrated model from a limited set of test structures can reliably "cover" a full-chip OPC application without any ambiguity under a known set of design rule constraints. Doubts from this ambiguity demand an extra design for manufacturing (DFM) verification step in addition to the already lengthy OPC application process. This is since semiconductor manufacturing requires that the post-OPC mask data contains no errors, or at least no catastrophic errors induced by OPC treatment, e.g., bridging or short. However, such DFM verification tools are again based on a perilous assumption that either one can use the same or yet another "calibrated" model from a limited set of test structures to check the OPC treated full-chip data for all possible trouble spots. In reality, a "calibrated" model may never be able to apply adequately to those of random two-dimensional (2-D) pattern structures on a full-chip that are lithographically unrelated to the limited set of test structures used for the model calibration. To ensure a more comprehensive coverage of the OPC model, we need a methodology that can quantify generalized 2-D test structures suitable for model calibration. In this paper, we propose a method to quantify generalized, 2-D patterns by representing them in "imaging signal space". The method that translates geometrical design rules into the boundary in "imaging signal space" is elaborated. We propose several critical quantities to characterize OPC model on a quantitative foundation to assess model from a statistical point of view.
机译:如今,基于模型的光学邻近校正(OPC)已成为65nm和45nm设计规则的先进光刻技术中的必需品,以实现具有生产价值的图案保真度。典型的做法是使用一组有限的测试结构来校准和确定OPC模型参数。 OPC模型校准的测试结构选择指南主要依靠经验和物理直觉。迄今为止,尚无已知的量化方法来确保有限的测试结构集中的校准模型能够可靠地“覆盖”全芯片OPC应用,而不会在已知的设计规则约束下产生任何歧义。除了已经很漫长的OPC应用过程之外,这种含糊的疑问还要求额外的制造设计(DFM)验证步骤。这是因为半导体制造要求OPC后掩模数据不包含错误,或者至少不包含由OPC处理(例如,桥接或短路)引起的灾难性错误。然而,这种DFM验证工具再次基于危险的假设,即一个人可以使用有限的一组测试结构中的相同或另一个“已校准”模型来检查OPC处理的全芯片数据中是否存在所有可能的故障点。实际上,“校准”模型可能永远无法适当地应用于全芯片上在光刻技术上与用于模型校准的有限测试结构集无关的随机二维(2-D)图案结构的模型。为了确保更全面地覆盖OPC模型,我们需要一种可以量化适用于模型校准的广义2-D测试结构的方法。在本文中,我们提出了一种通过在“成像信号空间”中表示广义的二维图案来量化它们的方法。阐述了将几何设计规则转换为“成像信号空间”边界的方法。我们提出了一些关键量,以便在定量基础上表征OPC模型,以便从统计角度评估模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号