首页> 外文会议>MRS spring meeting >Electrically-conductive micropatterns that promote cell adhesion and neurite extension
【24h】

Electrically-conductive micropatterns that promote cell adhesion and neurite extension

机译:促进细胞粘附和神经突扩展的导电微图案

获取原文

摘要

We recently demonstrated a new strategy to modify polypyrrole (pPy) with biological molecules that relies on a polyanionic dopant containing reactive functional groups. Specifically, chemical guidance cues such as poly-L-lysine (pLys) were tethered to pPy via amide bond formation with carboxylic acid groups of the polyanionic dopant, polyglutamic acid (pGlu) using EDC/NHS coupling reactions (see figure). This strategy overcomes several shortcomings found in other approaches used to modify conducting polymers by providing a doping procedure that insures efficient utilization of the biomolecule-of-interest without having to (i) synthesize new monomers with reactive functional groups or (ii) functionalize the conductive polymer post-electrodeposition. Consequently, an important feature of this new strategy is that it can be extended to other conducting polymers (i.e., poly(3,4- ethylenedioxythiophene) that are polycationic. In this presentation, we show how our strategy has been advanced beyond controlling the location of neuron adhesion and neurite outgrowth to modulating quantitatively the density of cells and their neural processes within micropatterned substrates. We attach multilayers of chemical guidance cues (e.g. pLys) to pPy via sequential EDC/NHS coupling reactions for the latter purpose. Details on the preparation of different substrates will be presented including their spectroscopic, microscopic, immunochemical and protein adsorption characterization. The density of hippocampal neurons and neurites are shown to be proportional to the surface concentration of the chemical cue (pLys). The number of cells adhered to areas outside of the micropattern will be shown to decrease as the density of the guidance cues within the micropattern increases until a physical limit of cell density is achieved Figure.
机译:我们最近展示了一种新的策略来改变含有依赖于含有反应性官能团的聚阴离子掺杂剂的生物分子。具体地,使用EDC / NHS偶联反应的聚阴离子掺杂剂,聚谷氨酸(PGLU)的羧酸基团将诸如聚-L-赖氨酸(帘布层)之类的化学引导提示通过酰胺键形成,与羧酸掺杂剂(PGLU)的羧酸基团进行酰胺键形成(见图)。该策略克服了在其他方法中发现的几种缺点,用于通过提供掺杂程序来改变导电聚合物的掺杂程序,其确保有效利用生物分子的利益而不必须(i)合成具有反应性官能团的新单体或(ii)官能化导电聚合物电码沉积。因此,这种新策略的重要特征是它可以扩展到其他导电聚合物(即,聚合的聚(3,4-亚乙基噻吩)是聚合物的。在本演示文稿中,我们展示了我们的策略如何超越控制位置。神经元粘附和神经沸石过度在微型解放底物中定量地调节细胞密度及其神经过程。我们通过顺序EDC / NHS耦合反应将化学引导提示(例如帘布层)的多层用于PPY,以进行后一种目的。关于制剂的详细信息将呈现不同的基质,包括它们的光谱,微观,免疫化学和蛋白质吸附表征。显示海马神经元和神经菌素的密度与化学提示(帘布层)的表面浓度成比例。粘附在外部区域的细胞数量MicroPattern将被证明在M内的指导提示的密度下降ICropattern增加,直到达到细胞密度的物理限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号