首页> 外文会议>International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion >Thermo-Fluids Considerations in the Development of a Silicon-based Micro-scale Direct Methanol Fuel Cell
【24h】

Thermo-Fluids Considerations in the Development of a Silicon-based Micro-scale Direct Methanol Fuel Cell

机译:硅基微型直接甲醇燃料电池开发中的热流体考虑

获取原文

摘要

A silicon-based micro-scale Direct Methanol Fuel Cell (DMFC) system is under development at Carnegie Mellon University, as a substitute for lithium-ion batteries to power hand-held electronic devices. The DMFC is simple in design, operational in any orientation and environmentally benign. The air flow and the methanol circulation are both at a natural convection draft, while a passive gas bubble separator removes CO_2 from the methanol chamber. The design and operation of the passive gas separator system, which has been successfully fabricated and tested, is described. Micro-scale Direct Methanol Fuel Cells have great potential for early applications in portable electronics due to their higher tolerance of power cost. However, challenges in system integration have to be overcome. A major issue is the development of micro-fluidics, which includes the micro pump for anode liquid re-circulation and for recycling the excess water from the cathode back to the anode, as well as the passive CO_2 gas bubble separation from the anode side liquids. In addition, the seamless integration of various micro-fluidic components and the electronic control system has been an essential concern for system reliability and cost reduction. The DMFC is designed using MEMS technology. To achieve high energy density, the excess water at the cathode is collected and pumped back to the anode. This micro fuel cell contains several unique features. A silicon wafer with an array of etched holes selectively coated with a non-wetting agent is used at the cathode to collect the water effectively. A silicon membrane micro pump is developed for pumping the collected water back to the anode. Finally, a passive micro-scale CO_2 bubble separator is developed to remove the gas bubbles from the anode stream. All of these silicon-based components are fabricated with a set of common processes on the same silicon wafer, such that interconnections are eliminated and fabrication cost is minimized. The resulting micro-scale fuel cell has an energy density four times larger than that of current lithium-ion batteries.
机译:卡内基梅隆大学正在开发一种基于硅的微型直接甲醇燃料电池(DMFC)系统,以代替锂离子电池为手持式电子设备供电。 DMFC设计简单,可在任何方向上操作且对环境无害。空气流和甲醇循环均处于自然对流状态,而被动式气泡分离器则将甲醇中的CO_2去除。描述了成功制造和测试的被动式气体分离器系统的设计和操作。微型直接甲醇燃料电池由于具有较高的功率成本承受能力,因此在便携式电子产品的早期应用中具有巨大的潜力。但是,必须克服系统集成方面的挑战。一个主要的问题是微流体技术的发展,其中包括用于阳极液体再循环和将多余的水从阴极循环回阳极的微型泵,以及从阳极侧液体中分离出的被动式CO_2气泡。另外,各种微流体部件与电子控制系统的无缝集成一直是系统可靠性和降低成本的重要考虑因素。 DMFC是使用MEMS技术设计的。为了获得高能量密度,收集阴极处多余的水并将其泵回阳极。这种微型燃料电池具有几个独特的功能。在阴极处使用硅晶片,该硅晶片具有被选择性地涂覆有非润湿剂的一系列蚀刻孔,以有效地收集水。开发了硅膜微泵,用于将收集到的水泵送回阳极。最后,开发了一种被动式微型CO_2气泡分离器,以从阳极流中去除气泡。所有这些基于硅的组件都是通过一组通用工艺在同一块硅晶片上制造的,从而消除了互连,并最大程度地降低了制造成本。最终的微型燃料电池的能量密度是当前锂离子电池的四倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号