首页> 外文会议>Annual Vertical Flight Society forum and technology display >Machine Learning based Digital Twin Simulation and Prediction of Structural Component's Fatigue Life
【24h】

Machine Learning based Digital Twin Simulation and Prediction of Structural Component's Fatigue Life

机译:基于机器学习的数字孪生仿真与结构构件疲劳寿命预测

获取原文

摘要

A key component for implementing the digital twin approach is to apply a validated high fidelity simulation tool to generate a mapping between the virtual test and structural performance. Due to the high computational intensity of physical simulation tools, their application for a complex system along with its error estimation can be time consuming. In addition, given the limited data gathered from sensors, onsite inspection, and tests at different configurations, it is imperative to create a high fidelity and efficient model based on the previously gathered information and enhance the model when more data points are gathered. Motivated by this, we develop a machine learning based digital twin simulation framework to predict fatigue life of a structural component from available information gathered. Different from a conventional physical simulation approach, the prediction error from the physical simulation and machine learning are explicitly obtained, in addition to the improvement of the computational efficiency at the prediction stage via the trained machine learning model. To illustrate the idea of this modeling strategy, we applied our developed 3D extended finite element toolkit for Abaqus (XFA3D) as a virtual testing tool for fatigue crack path and life prediction of a welded metallic component in conjunction with the observed testing data. Using machine learning techniques, we first estimate prediction error from the physical model based on previous cross validation results, and then predict the fatigue life in the presence of uncertainties associated with fabrication induced imperfection, welding induced residual stress, and the machine learning errors. It is found that the inclusion of as-manufactured characteristics and uncertainties are essential for the application of a digital twin approach for the total life management of aging structures.
机译:实现数字孪生方法的关键组件是应用经过验证的高保真度仿真工具来生成虚拟测试与结构性能之间的映射。由于物理仿真工具的计算强度很高,因此将它们应用于复杂系统及其误差估计可能很耗时。此外,鉴于从传感器,现场检查和在不同配置下进行的测试收集的数据有限,因此必须基于先前收集的信息创建高保真度和高效的模型,并在收集更多数据点时增强模型。因此,我们开发了一种基于机器学习的数字孪生仿真框架,可以根据收集到的可用信息预测结构部件的疲劳寿命。与传统的物理模拟方法不同,除了通过训练有素的机器学习模型提高预测阶段的计算效率外,还明确获得了来自物理模拟和机器学习的预测误差。为了说明此建模策略的思想,我们将开发的Abaqus有限元3D扩展有限元工具包(XFA3D)应用为虚拟测试工具,结合焊接的观测数据对疲劳裂纹路径和焊接金属部件的寿命进行了预测。使用机器学习技术,我们首先根据先前的交叉验证结果从物理模型估计预测误差,然后在存在与制造引起的缺陷,焊接引起的残余应力和机器学习误差相关的不确定性的情况下预测疲劳寿命。结果发现,包括制造特性和不确定性对于数字双胞胎方法在老化结构的总寿命管理中的应用是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号