首页> 外文会议>Annual Vertical Flight Society forum and technology display >Machine Learning based Digital Twin Simulation and Prediction of Structural Component's Fatigue Life
【24h】

Machine Learning based Digital Twin Simulation and Prediction of Structural Component's Fatigue Life

机译:基于机器学习的数字双胞胎模拟与结构部件疲劳寿命的预测

获取原文

摘要

A key component for implementing the digital twin approach is to apply a validated high fidelity simulation tool to generate a mapping between the virtual test and structural performance. Due to the high computational intensity of physical simulation tools, their application for a complex system along with its error estimation can be time consuming. In addition, given the limited data gathered from sensors, onsite inspection, and tests at different configurations, it is imperative to create a high fidelity and efficient model based on the previously gathered information and enhance the model when more data points are gathered. Motivated by this, we develop a machine learning based digital twin simulation framework to predict fatigue life of a structural component from available information gathered. Different from a conventional physical simulation approach, the prediction error from the physical simulation and machine learning are explicitly obtained, in addition to the improvement of the computational efficiency at the prediction stage via the trained machine learning model. To illustrate the idea of this modeling strategy, we applied our developed 3D extended finite element toolkit for Abaqus (XFA3D) as a virtual testing tool for fatigue crack path and life prediction of a welded metallic component in conjunction with the observed testing data. Using machine learning techniques, we first estimate prediction error from the physical model based on previous cross validation results, and then predict the fatigue life in the presence of uncertainties associated with fabrication induced imperfection, welding induced residual stress, and the machine learning errors. It is found that the inclusion of as-manufactured characteristics and uncertainties are essential for the application of a digital twin approach for the total life management of aging structures.
机译:用于实现数字双向方法的关键组件是应用验证的高保真仿真工具,以在虚拟测试和结构性能之间生成映射。由于物理仿真工具的高计算强度,它们对复杂系统的应用以及其误差估计可能是耗时的。此外,考虑到从传感器,现场检查和不同配置的测试中收集的有限数据,必须基于先前收集的信息创建高保真和有效的模型,并在收集更多数据点时增强模型。由此激励,我们开发了一种基于机器的数字双模拟框架,以预测收集的可用信息的结构部件的疲劳寿命。除了通过经过培训的机器学习模型的预测阶段的计算效率的改善之外,除了通过训练的机器学习模型的计算效率之外,还可以明确获得来自物理模拟和机器学习的预测误差。为了说明这种建模策略的想法,我们应用了我们开发的3D延长的Abaqus(XFA3D)有限元工具包作为一个虚拟的测试工具疲劳裂纹路径和寿命预测的与观察到的测试数据结合焊接金属部件。使用机器学习技术,我们首先根据先前的交叉验证结果估计物理模型的预测误差,然后在存在与制造诱导的缺陷,焊接诱导的残余应力和机器学习误差的情况下,预测存在于存在的不确定性的情况下的疲劳寿命。发现包含以制造的特性和不确定性对于应用数字双胞胎方法来纳入老化结构的总寿命管理至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号