首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Micro-Scale Nozzled Jet Heat Transfer Distributions and Flow Field Entrainment Effects Directly on Die
【24h】

Micro-Scale Nozzled Jet Heat Transfer Distributions and Flow Field Entrainment Effects Directly on Die

机译:微型喷嘴的射流传热分布及流场夹带效应对模具的直接影响

获取原文

摘要

The heat transfer distributions and associated flow field characteristics of impinging jets have been studied extensively, but mostly for submerged jet conditions on the hot target wall in confined channels. A review of the literature reveals that fewer studies have been expended for non-submerged single phase jets in confined channels. In this research, a total of 64 distinct CFD RANS simulations of turbulently impinging jets issued from a single circular nozzle and accelerated under an orifice plate comprising twenty tapered micro-scaled nozzles in confined channels at different nozzle to wall separation (1 ≤z/d ≤ 16) distances are examined using Icepak and Fluent - commercial finite-volume solvers to extract intricate details of impinging flow fields on a hot silicon wall. An overall heat transfer coefficient to the order of 170,000 W/m2 °K has been observed on the surface of the silicon using this multiple micro-jet impingement setup. The dielectric fluid jet impinging on a wall is a high power density bare die silicon wall dissipating a non-uniform power of 95 Watts and the heat flux power density is very high in certain regions of the die. Flow field simulations predict recirculating toroidal patterns for each impinging micro-jet on the die, entraining near the outflow which is a behavior that is consistent and concurring with the characteristics of confined flow fields. Large Eddy Simulations are used to predict the flow-field turbulent characteristics of a single circular jet impinging directly on the silicon wall for four significant cases with varying (0.5 ≤; z/d ≤ 2) distances at a Reynolds of 20,000 issued from main nozzle reveal intricate features of flow field distributions including entrainment effects on the bare die hot silicon. Results of flow entrainment, surface temperatures, and heat transfer rates along with average Nusselt numbers at the impinging silicon wall are presented for all the CFD simulations cases collated.
机译:已经对射流的传热分布和相关的流场特性进行了广泛的研究,但大多数情况是在密闭通道中热目标壁上的浸没式射流条件下进行的。文献回顾表明,对密闭通道中非淹没式单相射流的研究较少。在这项研究中,对单个圆形喷嘴发出的湍流冲击射流进行了总共64个不同的CFD RANS模拟,并在孔板下加速了该孔板,该孔板包括二十个锥形微尺度喷嘴,在不同的喷嘴与壁之间的分隔区域内(1≤z/ d ≤16)使用Icepak和Fluent-商业有限体积求解器检查距离,以提取撞击在热硅壁上的流场的复杂细节。总传热系数约为170,000 W / m 2 使用这种多重微射流冲击装置,已在硅表面观察到°K。撞击在壁上的电介质流体是高功率密度裸芯片硅壁,该壁耗散了95瓦的不均匀功率,并且在芯片的某些区域中,热通量功率密度非常高。流场模拟预测在模具上的每个撞击微射流的再循环环形图案,在流出附近夹带,这是一致的行为,并与受限流场的特征一致。大涡模拟用于预测四种主要情况下,直接从主喷嘴发出的雷诺数为20,000(雷诺数)的距离(0.5≤; z / d≤2)变化的情况下,直接撞击硅壁的单个圆形射流的流场湍流特性。揭示了流场分布的复杂特征,包括对裸芯片热硅的夹带效应。在整理的所有CFD模拟案例中,均给出了夹杂流,表面温度和传热速率以及撞击硅壁处的平均Nusselt数的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号