首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >LARGE-EDDY SIMULATION OF TURBULENT FLOW OVER A HEAVY VEHICLE WITH DRAG REDUCTION DEVICES
【24h】

LARGE-EDDY SIMULATION OF TURBULENT FLOW OVER A HEAVY VEHICLE WITH DRAG REDUCTION DEVICES

机译:减速装置的重型车辆湍流的大涡流模拟

获取原文

摘要

In order to improve the fuel efficiency of heavy vehicles, flow control devices aiming at aerodynamic drag reduction are often utilized. Computational simulation has been widely used in the investigation of fluid dynamics associated with aerodynamic drag over a heavy vehicle and control effects of many drag reduction devices. Most previous studies were, however, conducted using computational techniques based on the Reynolds-averaged Navier-Stokes equations and with rather simplified geometries (i.e., GTS, GCM, and Ahmed body), and therefore, the utility of the understanding of the drag-producing flow physics is often impractical and limited. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. The filtered Navier-Stokes equations (Eq. (1), Eq. (2)) are solved using Vreman-based dynamic subgrid-scale (SGS) model in unstructured grid. Fully-implicit fractional step method is employed as a time integration method and all terms of the N-S equations are advanced using the Crank-Nicolson method. A second-order central difference discretization scheme is implemented in space. Flow over a 15ton truck with and without drag reduction devices is simulated. The LES result is first validated against experimental measurement with respect to drag coefficient (Cd). The measured and simulated drag coefficient of a 15ton truck with and without side skirt and boat tail are shown in Tab. 1 and Tab. 2, respectively. Drag is caused by pressure difference and momentum loss along the streamwise direction. Thus, drag can be estimated by visualizing the pressure and streamwise velocity field over a vehicle. The time-averaged pressure and velocity fields around a truck model with and without drag reduction devices are plotted in Fig. 1-4.
机译:为了提高重型车辆的燃料效率,通常利用旨在减少空气动力学阻力的流量控制装置。计算模拟已广泛用于调查与空气动力学阻力相关的流体动力学,以及许多阻力减少装置的控制效果。然而,最先前的研究是使用基于reynolds平均的Navier-Stokes方程的计算技术和相当简化的几何形状(即GTS,GCM和Ahmed Body)进行,因此,理解拖动的实用性生产流物理通常是不切实际和有限的。在本研究中,使用大涡模拟(LES)模拟具有现实几何细节的重型车辆周围的湍流,其能够以足够的细节提供负责空气动力学的非定常流物理。过滤的Navier-Stokes方程(EQ。(1),EQ。(2))在非结构化网格中使用基于VREMAN的动态子级(SGS)模型来解决。使用完全隐式的分数步骤方法作为时间集成方法,使用曲柄Nicolson方法进行N-S方程的所有术语。在太空中实施了二阶中心差离散化方案。模拟带有且没有阻力减少设备的15ton卡车流。首先验证LES结果针对拖动系数(CD)进行实验测量验证。带有和无侧裙和船尾的15吨叉车的测量和模拟拖曳系数在标签中显示。 1和标签。分别为2。拖动是由沿着流动方向的压力差和动量损失引起的。因此,可以通过在车辆上可视化压力和流动速度场来估计拖动。在图1-4中绘制了具有和不具有阻力装置的卡车模型周围的时间平均压力和速度场。1-4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号