首页> 外文会议>Conference on single-use technologies II: bridging polymer science to biotechnology applications >ENABLING NEXT-GENERATION CELL LINE DEVEOPMENT USING CONTINUOUS PERFUSION AND NANOFLUIDIC TECHNOLOGIES
【24h】

ENABLING NEXT-GENERATION CELL LINE DEVEOPMENT USING CONTINUOUS PERFUSION AND NANOFLUIDIC TECHNOLOGIES

机译:使用连续灌注和纳米流体技术启用下一代细胞系路灯

获取原文

摘要

The manufacturing process for a biologic begins with establishing a clonally derived, stable production cell line. Generating a highly productive cell line is time and resource intensive and involves screening of a large number of candidates. While miniaturization and automation strategies can reduce resources and increase throughput, they have matured and recent advances have been incremental. With increasing pressure on time to commercialization and the increasing diversity and complexity of therapies in discovery research, there is a need to transform cell line development to accelerate patient access to novel therapies and nanofluidic technology are on potential solution. In this study, we present cell line development data on the Berkeley Lights integrated platform. Cells are manipulated at a single cell level though use of OptoElectronic Positioning (OEP) technology which utilizes projected light patterns to activate photoconductors that gently moves cells. Common cell culture tasks can be programmed though software allowing thousands of cell lines to cultured simultaneously. Cultures can be interrogated for productivity and growth characteristics while on the chip at ~100-fold miniaturization and continuous perfusion of cell culture medium enables effective and robust cell growth and product concentration despite starting from a single cell. Concepts from perfusion culture are also applied to measure productivity and product quality. We demonstrate that commercial production CHO cell lines can be cultured in this nanofluidic environment and show that sub clone isolation, recovery, and selection are achieved with high efficiency. Overall, this technology has the potential to transform cell line development workflows through the replacement of laborious manual processes with nanofluidics and automation, and can ultimately enable the rapid selection of high performing cell lines.
机译:生物学的制造方法开始于建立克隆衍生的稳定的生产细胞系。产生高效的细胞系是时间和资源密集,并且涉及筛选大量候选者。虽然小型化和自动化策略可以减少资源并提高吞吐量,但它们已经成熟,最近的进步一直是渐进的。随着越来越多的压力,随着时间的推移,在发现研究中的疗法中的增加和疗法的越来越多的多样性和复杂性,需要改变细胞系开发,以加速患者对新型疗法和纳米流体技术的潜在解决方案。在这项研究中,我们在伯克利灯集成平台上呈现细胞系开发数据。在使用突出的光图案的光电定位(OEP)技术的使用以激活轻轻地移动电池的光电导体来在单个电池水平下操纵细胞。虽然可以将普通的细胞培养任务进行编程,但是允许数千个细胞系同时培养。可以询问培养物的生产率和生长特性,同时在〜100倍的小型化的芯片上,连续灌注细胞培养基使得尽管从单个细胞开始,但尽管从单个细胞开始,但尽管能够有效和鲁棒的细胞生长和产物浓度。来自灌注培养的概念也适用于测量生产率和产品质量。我们证明商业生产CHO细胞系可以在该纳米流体环境中培养,并表明亚克克隆分离,恢复和选择以高效率实现。总体而言,这项技术有可能通过用纳米流体和自动化更换费力的手动工艺来改变细胞系开发工作流程,最终能够快速选择高表现细胞系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号