首页> 外文会议>Annual International Battery Seminar and exhibit >Combining Materials Modelling and Informatics Techniques for Efficient Search of Fast Lithium Ionic Conductors for All-Solid-State Battery Application
【24h】

Combining Materials Modelling and Informatics Techniques for Efficient Search of Fast Lithium Ionic Conductors for All-Solid-State Battery Application

机译:结合材料建模和信息技术,可快速搜索适用于全固态电池应用的快速锂离子导体

获取原文

摘要

There is now a rapidly growing interest to efficiently and systematically search/screen for new functional materials using high-throughput materials modelling. Oftentimes, the workhorse tool employed for this purpose is based on first-principles density functional theory (DFT) approach because of good predictive accuracy with respect to experimental results. However, for search/screening of fast lithium ionic conductors, the heavy computational cost for evaluating Li ionic conductivity has made it impractical to use the latter as a search/screening criterion and it also impose a severe restriction on search space size. Machine learning can aid in addressing this problem by building probabilistic models for computation-intensive material properties such as ionic conductivity. In here, we present our recent efforts aimed towards the development of an effective and efficient search/screening workflow for fast lithium ionic conductors. We highlight our developed general representation schemes (accounting for cell periodicity, atom ordering, and number of atoms) for inorganic compounds or crystalline solids, demonstrating their predictive power for various DFT-calculated material properties such as cohesive energy, material density, electronic band gap energy, and thermodynamic decomposition energy[1]. We also present our informatics-aided DFT-based screening of a chemical search space with olivine- and tavorite-type structures and with ion migration energy and thermodynamic stability as criteria[2,3,4].References[1] Jalem et al., Sci. Tech. Adv. Mater. 2018, in press.[2] Jalem et al., J. Chem. Inf. Model. 2015, 55, 1158-1168.[3] Jalem et al., J. Mater. Chem. A 2014, 2, 720-734.[4] Jalem et al., Chem. Mater. 2012, 24, 1357-1364.
机译:现在,人们对使用高通量材料建模来高效,系统地搜索/筛选新功能材料的兴趣迅速增长。通常,出于对实验结果的良好预测准确性,为此目的而使用的主力工具通常基于第一原理密度泛函理论(DFT)方法。然而,对于快速锂离子导体的搜索/筛选,用于评估锂离子电导率的沉重计算成本使得将后者用作搜索/筛选标准变得不切实际,并且也对搜索空间尺寸施加了严格的限制。机器学习可以通过为计算密集型材料属性(例如离子电导率)建立概率模型来帮助解决此问题。在这里,我们介绍了我们最近的努力,旨在为快速锂离子导体开发有效而高效的搜索/筛选工作流程。我们重点介绍了我们为无机化合物或结晶固体开发的通用表示方案(考虑了细胞周期,原子序和原子数),证明了它们对各种DFT计算的材料特性(如内聚能,材料密度,电子带隙)的预测能力能量和热力学分解能量[1]。我们还介绍了基于信息学的基于DFT的化学搜索空间的筛选,该搜索空间具有橄榄石和铁矿型结构以及离子迁移能量和热力学稳定性[2,3,4]。参考文献[1] Jalem等。 ,科学。科技进阶母校2018年,印刷中。[2] Jalem等人,J.Chem.Soc。 Inf。模型。 2015,55,1158-1168。[3] Jalem等人,J.Mater。化学A 2014,2,720-734。[4] Jalem等,化学。母校2012,24,1357-1364。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号