首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Thermal Interface Material Enablement of Off-Board Two-Phase Cooling
【24h】

Thermal Interface Material Enablement of Off-Board Two-Phase Cooling

机译:板外两相冷却的热界面材料实现

获取原文
获取外文期刊封面目录资料

摘要

Two-phase, refrigerant-based cooling offers significant promise for increasing heat densities and energy efficiencies of electronic components. One barrier to wide spread adoption of two-phase cooling solutions is preserving product features deemed essential for product functionality. An important feature present in a wide range of product applications, particularly within the telecommunications area, is allowing a circuit pack card to be removed and re-inserted within an operating equipment shelf without interruption of the shelf function and without undue requirements on end-user skill or time. This feature is often referred to as “hot-swappability” or “plug-and-play capability”, and is readily accommodated with air-cooling approaches, where the circuit pack card is effectively immersed in the air cooling medium. Two-phase cooling solutions to be used for these applications must therefore possess this essential “hot swappability” feature for widespread commercial adoption. This paper presents the details of a hybrid (air- and two-phase) cooling solution which incorporates a two-phase, refrigerant-cooled cold plate (evaporator) located at the rear of an equipment shelf and placed between the electrical backplane and circuit pack cards that slide into the shelf. The heat from the circuit pack components is transferred to the cold plate via a highly-conductive heat transfer element comprising, for example, either a heat pipe or a vapor chamber. Thermal interface materials facilitate efficient heat transfer at the interfaces between the heat-generating component and the highly-conductive heat transfer element, and the highly-conductive heat transfer element and the cold plate, respectively. Moreover, to ensure “hot swappability”, a mechanically-compliant (compressible) thermal interface material that maintains low thermal resistance under low applied force after multiple mate and de-mate cycles, is required. Details of the experimental apparatuses adopted in this study for evaluating the performance of the thermal interface materials as a function of applied pressure and the performance of the highly-conductive heat transfer elements as a function of imposed heat load and operating temperature are presented. Test results are reported for a range of suitable candidate thermal interface materials and heat pipe and vapor chamber assemblies. Finally, estimates are also provided for the overall heat removal capability of this approach given typical maximum component case temperature specifications, measured thermal interface material properties and contact areas, as well as highly-conductive heat transfer element properties and cold plate surface temperatures.
机译:基于制冷剂的两相冷却为提高电子组件的热密度和能效提供了广阔的前景。广泛采用两相冷却解决方案的一个障碍是保留被认为对产品功能至关重要的产品功能。在广泛的产品应用中,特别是在电信领域中,存在的重要特征是允许将电路板卡卸下并重新插入到操作设备的机架中,而不会中断机架的功能,并且对最终用户没有不适当的要求技能或时间。此功能通常称为“热插拔功能”或“即插即用功能”,很容易与空气冷却方法配合使用,其中电路板卡有效地浸入了空气冷却介质中。因此,用于这些应用的两相冷却解决方案必须具有这种基本的“热插拔性”功能,才能在商业上得到广泛采用。本文介绍了一种混合(空气和两相)冷却解决方案的详细信息,该解决方案包括一个位于设备架后部并位于电气底板和电路板之间的两相,制冷剂冷却的冷板(蒸发器)。滑入书架的卡片。来自电路板组件的热量通过高传导性的传热元件传递到冷板,该传热元件包括例如热管或蒸气室。热界面材料分别促进了在发热部件和高导热性传热元件之间以及高导热性传热元件和冷却板之间的界面处的有效传热。而且,为了确保“热插拔性”,需要一种机械兼容(可压缩)的热界面材料,该材料在多次配合和脱配合循环后,在较低的外加力下仍能保持较低的热阻。本研究中采用的用于评估热界面材料性能与所施加压力的函数关系以及高传导性传热元件的性能与所施加的热负荷和工作温度之间的关系的实验设备的详细信息将被介绍。报告了一系列合适的候选热界面材料以及热管和蒸汽室组件的测试结果。最后,还给出了该方法的总体排热能力的估算值,其中给出了典型的最大组件外壳温度规格,测得的热界面材料性能和接触面积,以及高传导性传热元件性能和冷板表面温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号