首页> 外文会议>International conference on biomimetic and biohybrid systems >Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks
【24h】

Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks

机译:昆虫启发的基本运动检测,包括电阻记忆和尖峰神经网络

获取原文

摘要

Computation of the direction of motion and the detection of collisions are important features of autonomous robotic systems for course steering and avoidance manoeuvres. Current approaches typically rely on computing these features in software using algorithms implemented on a microprocessor. However, the power consumption, computational latency and form factor limit their applicability. In this work we take inspiration from motion detection studied in the Drosophila visual system to implement an alternative. The nervous system of the Drosophila contains 150000 neurons [1] and computes information in a parallel fashion. We propose a topology comprising a dynamic vision sensor (DVS) which provides input to spiking neural networks (SNN). The network is realised through interconnecting leaky-integrate and fire (LIF) complementary metal oxide semiconductor (CMOS) neurons with hafnium dioxide (HfO_2) based resistive random access memories (RRAM) acting as the synaptic connections between them. A genetic algorithm (GA) is used to optimize the parameters of the network, within an experimentally determined range of RRAM conductance values, and through simulation it is demonstrated that the system can compute the direction of motion of a grating. Finally, we demonstrate that by modulating RRAM conductances and adjusting network component time constants the range of grating velocities to which it is most sensitive can be adapted. It is also shown that this allows for the system to reduce power consumption when sensitive to lower velocity stimulus. This mimics the behavior observed in Drosophila whereby the neuromodulator octopamine adjusts the response of the motion detection system when the insect is resting or flying.
机译:运动方向的计算和碰撞的检测是自主机器人系统的重要特征,用于航向操纵和回避操纵。当前的方法通常依赖于使用在微处理器上实现的算法在软件中计算这些特征。但是,功耗,计算延迟和形状因数限制了它们的适用性。在这项工作中,我们从果蝇视觉系统中研究的运动检测中获得启发,以实现替代方案。果蝇的神经系统包含150000个神经元[1],并以并行方式计算信息。我们提出了一种包含动态视觉传感器(DVS)的拓扑,该拓扑为尖峰神经网络(SNN)提供输入。该网络是通过将泄漏集成和火灾(LIF)互补金属氧化物半导体(CMOS)神经元与基于二氧化ha(HfO_2)的电阻性随机存取存储器(RRAM)相互连接而实现的。遗传算法(GA)用于在实验确定的RRAM电导值范围内优化网络参数,并通过仿真证明该系统可以计算光栅的运动方向。最后,我们证明了通过调制RRAM电导并调整网络组件时间常数,可以适应最敏感的光栅速度范围。还显示出,当对较低速度刺激敏感时,这允许系统降低功耗。这模仿了在果蝇中观察到的行为,从而当昆虫处于静止或飞行状态时,神经调节剂章鱼胺可调节运动检测系统的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号