首页> 外文会议>Annual AHS international forum and technology display >Framework for Attitude Controller Development Using Physics Based Flight Dynamics and Hardware-in-the-loop Simulation for Rotary Wing UAVs
【24h】

Framework for Attitude Controller Development Using Physics Based Flight Dynamics and Hardware-in-the-loop Simulation for Rotary Wing UAVs

机译:态度控制器开发框架使用基于物理的飞行动态和旋翼无人机的硬件内仿真

获取原文

摘要

This paper presents the development of a framework for establishment of virtual environment for testing and tuning of attitude controller for rotary wing Unmanned Aerial Vehicles (UAVs). A flybarless mmi-helicopter UAV is used as the platform for exposition of the proposed framework. A hardware-in-the-loop simulation (HILS) framework is established using a physics based flight dynamics simulation to enable controller design for rotary wing UAVs. The HILS setup includes the flight dynamics model, physical servo actuators and actual UAV autopilot. A computationally light real-time flight dynamics simulation is developed by using the properties estimated using series of simple ground-based experiments to simulate the small unmanned helicopter. The simulation is validated by performing flight tests on the actual UAV. It is demonstrated that accurate physics based simulations can be done without performing system-identification experiments, which can be an issue for an unstable rotary-wing vehicles with unknown dynamics. The utility of the HILS setup has been established by using the tuned PI attitude controller developed in the virtual environment for stabilization of the actual UAV under hovering condition. The validated HILS setup obviated the need for carrying out flight testing for system-identification, as all the relevant parameters required for the real-time simulation could be estimated using ground based tests.
机译:本文介绍了建立虚拟环境的框架,用于测试和调整旋转翼无人驾驶飞行器(无人机)的姿态控制器的测试和调整。 vervbarless MMI-Helicopter UAV被用作阐述所提出的框架的平台。使用基于物理的飞行动力学模拟建立了硬件仿真(HIL)框架,以使控制器设计能够为旋转翼UAV启用。 HILS设置包括飞行动力学模型,物理伺服执行器和实际的UAV自动驾驶仪。通过使用使用一系列简单地基实验估计的特性来开发计算光实时飞行动力学模拟,以模拟小无人驾驶直升机。通过对实际UAV执行飞行测试来验证模拟。据证明,可以在不执行系统识别实验的情况下进行准确的基于物理学的模拟,这可能是具有未知动态的不稳定旋翼车辆的问题。通过使用虚拟环境中开发的调谐PI姿态控制器建立了HILS设置的实用程序,以便在悬停条件下稳定实际的UAV。经过验证的HILS设置避免了对系统识别进行飞行测试的需要,因为可以使用基于地面的测试估计实时模拟所需的所有相关参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号