首页> 外文会议>AIAA Aerospace Sciences Meeting;AIAA SciTech Forum >Effectiveness of Detonation Engines for Power Production
【24h】

Effectiveness of Detonation Engines for Power Production

机译:爆震发动机发电的有效性

获取原文

摘要

The effectiveness or exergy efficiency of the Zeldovich-von Neumann-Doering (ZND) cycle for a detonation engine is compared to the effectiveness of the Brayton, Otto, and Diesel cycles relative to the thermal efficiency of the ideal Carnot cycle for methane-air powered heat engines. Quantifying effectiveness through combined first and second law thermodynamic cycle analysis allows for determination of not only superior cycle power output, but also in determining which processes can performance gains be realized. The ZND cycle is used to model the detonation engine because it incorporates the supersonic flow processes of shock compression, and Rayleigh heat addition instead of the Humphrey cycle which assumes constant volume heat addition. A simplified pulse detonation turbine engine generator is modeled by the ZND cycle. A novel thermodynamic cycle referred to as the detonation engine piston (DEP) cycle is proposed for a pulse detonation engine that utilizes a piston for power extraction. The DEP cycle is similar to ZND cycle except the heat rejection process is at constant volume in contrast to the constant pressure heat rejection of the ZND cycle. Methane-air combustion is examined for the engine cycles for its practicality stemming from methane's widespread commercial availability. Effectiveness is calculated both by subsystem component analysis, and by indirect cycle thermal efficiency analysis. The reactant and product gas properties were calculated using the complete thermodynamic equilibrium. Comparison of the cycles show that for equivalent pressure ratios, the ZND and DEP cycles for pulse detonation engines produced superior thermal efficiency and effectiveness than the Brayton, Otto, and Diesel cycle heat engines.
机译:将Zeldovich-von Neumann-Doering(ZND)循环用于爆震发动机的效率或火用效率与Brayton,Otto和Diesel循环的效率(相对于甲烷空气动力的理想卡诺循环的热效率)进行比较热机。通过结合第一定律和第二定律热力学循环分析来量化有效性,不仅可以确定出色的循环功率输出,还可以确定可以实现性能提升的过程。 ZND循环用于对爆震引擎建模,因为它结合了冲击压缩和超声瑞​​雷热添加的超音速流动过程,而不是假定体积热量附加恒定的汉弗莱循环。通过ZND循环对简化的脉冲爆震涡轮发动机发电机进行建模。对于脉冲爆震发动机,提出了一种新颖的热力学循环,称为爆震发动机活塞(DEP)循环,该脉冲爆震发动机利用活塞进行动力提取。 DEP循环与ZND循环相似,除了与ZND循环的恒定压力排热相比,排热过程的体积恒定。甲烷-空气燃烧在发动机循环中的实用性来自于甲烷的广泛商业可得性。有效性是通过子系统组件分析和间接循环热效率分析来计算的。使用完全热力学平衡来计算反应物和产物气体的性质。循环的比较表明,在等效压力比下,脉冲爆震发动机的ZND和DEP循环比布雷顿,奥托和柴油循环热机产生了更高的热效率和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号