首页> 外文学位 >Ideal cycle analysis of a regenerative pulse detonation engine for power production.
【24h】

Ideal cycle analysis of a regenerative pulse detonation engine for power production.

机译:用于发电的再生脉冲爆震发动机的理想循环分析。

获取原文
获取原文并翻译 | 示例

摘要

Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone.;This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle.;Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen--air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines.;Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non--regenerative cycle. For a hydrogen--air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 ≤ pic ≤ 25, where pi c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.
机译:在过去的几十年中,大量的研究集中在脉冲爆震发动机(PDE)上,以有望替代现有的推进系统,并将其潜在地应用在飞机上,从亚音速到低超音速领域。另一方面,对于将爆轰应用于电力生产已经很少关注。评估PDE性能的一种方法是通过热力学循环分析。较早的工作采用了PDE的热力学循环,该循环基于这样的假设,即爆轰过程可以通过恒定体积过程近似,称为汉弗莱循环。 Fickett-Jacob循环使用一维Chapman-Jouguet(CJ)爆轰理论,也已用于模拟PDE循环。但是,理想的PDE循环必须包括具有有限化学反应速率的基于爆轰的压缩和放热过程,这在Zeldovich-von Neumann-Doring爆轰模型中得到了解释,其中冲击被认为是不连续的跳跃,因此通过有限的放热反应区。这项工作提出了一个热动力循环分析,用于发电的理想PDE循环。编写了仅使用一个输入值的代码,即燃料-氧化剂混合物的反应热,该程序基于该输入值计算ZND循环上的所有点(p-v和T-s图) ,包括von Neumann尖峰和CJ点,以及每个点的所有未量纲状态属性。此外,该程序针对相同的输入值计算汉弗莱和布雷顿循环上的点。因此,可以计算和比较各个循环的热效率。燃烧的放热以通用形式表示,以使该程序可用于多种燃料和氧化剂,并且还允许将其用于实时监测和控制PDE的系统中,其中反应热可以作为燃料-氧化剂比的函数获得。汉弗莱和ZND循环与布雷顿循环进行了比较,研究了不同的燃料-空气混合物,例如甲烷,丙烷和氢气。讨论了与爆轰过程有关的ZND和Humphrey循环的有效性和局限性,并解释了为PDE循环选择最佳模型的标准。可以看出,ZND循环是PDE循环的更合适的表示。接下来,将PDE的热能和电力产生效率与基于爆燃的布雷顿循环进行比较。布雷顿循环在压缩机压力比为1时显示出0的效率,而ZND循环的氢-空气热效率从42%开始,然后在压缩比为7的情况下攀升至66%的峰值。缓慢下降以获得更高的压缩比。对于超过23的压缩比,布雷顿循环效率提高到PDE之上。这一发现支持了PDE相对于燃气轮机的理论优势,因为PDE仅需要风扇或仅几个压缩机级,从而消除了对重型压缩机机械的需求, PDE较其他发动机更简单,因此更具成本效益。最后,提出了一项再生研究,以分析废气的使用如何改善系统的性能。将再生ZND循环的热效率与非再生循环的热效率进行比较。对于氢-空气混合物,热效率从不再生的循环的52%增加到再生循环的78%。将该效率与84%的卡诺效率进行比较,这是该循环的最大理论效率。与布雷顿循环的热效率相比,在研究的压力比为5≤pic≤25的情况下,再生循环的效率始终更高,其中pi是循环的压缩机压力比。该观察结果加强了在PDE上使用再生的想法。

著录项

  • 作者

    Bellini, Rafaela.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Energy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号