首页> 外文会议>International conference on inductive logic programming >Towards Nonmonotonic Relational Learning from Knowledge Graphs
【24h】

Towards Nonmonotonic Relational Learning from Knowledge Graphs

机译:从知识图谱走向非单调关系学习

获取原文

摘要

Recent advances in information extraction have led to the so-called knowledge graphs (KGs), i.e., huge collections of relational factual knowledge. Since KGs are automatically constructed, they are inherently incomplete, thus naturally treated under the Open World Assumption (OWA). Rule mining techniques have been exploited to support the crucial task of KG completion. However, these techniques can mine Horn rules, which are insufficiently expressive to capture exceptions, and might thus make incorrect predictions on missing links. Recently, a rule-based method for filling in this gap was proposed which, however, applies to a flattened representation of a KG with only unary facts. In this work we make the first steps towards extending this approach to KGs in their original relational form, and provide preliminary evaluation results on real-world KGs, which demonstrate the effectiveness of our method.
机译:信息提取的最新进展导致了所谓的知识图(KGs),即大量的相关事实知识的集合。由于KG是自动构建的,因此它们本质上是不完整的,因此在开放世界假设(OWA)下自然得到处理。已利用规则挖掘技术来支持KG完成的关键任务。但是,这些技术可以挖掘Horn规则,这些规则表达不足以捕获异常,因此可能对丢失的链接做出不正确的预测。最近,提出了一种基于规则的方法来填补这一空白,但是,该方法适用于仅具有一元事实的KG的扁平化表示。在这项工作中,我们迈出了将这种方法扩展到其原始关系形式的KG的第一步,并提供了对现实世界KG的初步评估结果,这证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号