首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >Computational and Experimental Investigation into Flapping Wing Propulsion
【24h】

Computational and Experimental Investigation into Flapping Wing Propulsion

机译:扑翼动力的计算与实验研究

获取原文

摘要

The goal of the present study is to provide a better understanding of the flapping wing propulsion of a robotic bird for varying kinematics of the motion. For that purpose the flow over 2D pitching and plunging airfoil sections of the wing of the robotic bird has been numerically simulated. The airfoil motion is implemented using a dynamic mesh, which moves the airfoil within a structured C-grid in a re-meshing unstructured grid. The results of the numerical simulation of the flow over the mid-wing airfoil section of the robotic bird identify the influence of different kinematics. It shows that for an increasing Strouhal number, the maximum effective angle of attack increases. This results in a stronger Leading Edge Vortex (LEV) and therewith a stronger reverse von Karman vortex street in the wake. In the thrust-producing wake, the air is accelerated in between the vortices, which yields time-averaged a pronounced streamwise jet behind the airfoil. It has also been found that higher amplitudes of the pitching angles yield lower effective angles of attack. For that case the formed LEV's are milder and higher efficiencies are obtained, however, resulting in a lower cruise velocity. The efficiency for different pitching angles peaks for 0.1<St<0.3, which is close to the optimum Strouhal number regime found in nature. The maximum efficiency is always found for a similar maximum effective angle of attack of around 11 degrees. The jet-like velocity profiles obtained for a range of Strouhal numbers are compared with results of wind-tunnel experiments for the flapping robotic bird. Streamwise jets have been measured with strength of order of magnitude comparable to the ones found in the numerical simulations for the flow around the mid-wing airfoil section.
机译:本研究的目的是提供一个更好的理解,以改变运动的运动学的机器鸟的拍打翼推进。为了这个目的,已经对飞行器鸟的机翼的二维俯仰和俯冲翼型截面上的流动进行了数值模拟。翼型运动是使用动态网格实现的,该网格在重新网格化的非结构化网格中在结构化C网格内移动翼型。机鸟中翼翼型截面上的流动的数值模拟结果确定了不同运动学的影响。它表明,对于增加的Strouhal数,最大有效迎角会增加。这导致更强的前缘涡流(LEV),从而在尾流中产生更强的冯·卡曼反向涡街。在产生推力的尾流中,空气在涡流之间被加速,这在翼型后面产生了时间平均的明显的沿流方向的射流。还已经发现,俯仰角的较大幅度产生较低的有效攻角。在这种情况下,形成的LEV较为温和并且获得了更高的效率,但是导致了较低的巡航速度。在0.1 <St <0.3范围内,不同俯仰角的效率峰值接近自然界中最佳的Strouhal数形式。对于相似的最大有效攻角(约11度),始终会找到最大效率。将针对一定范围的Strouhal数获得的喷射状速度分布图与扑翼机禽的风洞实验结果进行了比较。测量了沿流方向的射流,其强度与在数值模拟中发现的中翼翼型截面周围的流动强度相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号