首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >LOW-TEMPERATURE TWO-PHASE MICRO-CHANNEL COOLING FOR HIGH-HEAT-FLUX THERMAL MANAGEMENT OF DEFENSE ELECTRONICS
【24h】

LOW-TEMPERATURE TWO-PHASE MICRO-CHANNEL COOLING FOR HIGH-HEAT-FLUX THERMAL MANAGEMENT OF DEFENSE ELECTRONICS

机译:低温两相微通道冷却,用于国防电子的高温通量热管理

获取原文

摘要

For a given heat sink thermal resistance and ambient temperature, the temperature of an electronic device rises fairly linearly with increasing device heat flux. This relationship is especially problematic for defense electronics, where heat dissipation is projected to exceed 1000W/cm{sup}2 in the near future. Direct and indirect low temperature refrigeration cooling facilitate appreciable reduction in the temperature of both coolant and device. This study explores the benefits of cooling the device using direct and indirect refrigeration cooling systems. In the direct cooling system, a micro-channel heat sink serves as an evaporator in a conventional vapor compression cycle using R134a as working fluid. In the indirect cooling system, HFE 7100 is used to cool the heat sink in a primary pumped liquid loop that rejects heat to a secondary refrigeration loop. Two drastically different flow behaviors are observed in these systems. Because of compressor performance constraints, mostly high void fraction two-phase patterns are encountered in the R134a system, dominated by saturated boiling. On the other hand, the indirect refrigeration cooling system facilitates highly subcooled boiling inside the heat sink. Both systems are shown to provide important cooling benefits, but the indirect cooling system is far more effective at dissipating high heat fluxes. Tests with this system yielded cooling heat fluxes as high as 840W/cm{sup}2 without incurring critical heat flux (CHF). Results from both systems are combined to construct an overall map of performance trends relative to mass velocity, subcooling, pressure, and surface tension. Extreme conditions of near-saturated flow, low mass velocity, and low pressure produce 'micro' behavior, where macro-channel flow pattern maps simply fail to apply, instabilities are prominent, and CHF is quite low. One the other hand, systems with high mass velocity, high subcooling, and high pressure are far more stable and yield very high CHF values; two-phase flow in these systems follows the fluid flow and heat transfer behavior as well as the flow pattern maps of macro-channels.
机译:对于给定的散热器热阻和环境温度,电子器件的温度随着器件热通量的增加而相当线性地升高。这种关系对于防御电子器件尤为问题,其中散热在不久的将来投射到超过1000W / cm {sup} 2。直接和间接的低温制冷冷却有助于降低冷却剂和装置的温度。本研究探讨了使用直接和间接制冷冷却系统冷却装置的益处。在直接冷却系统中,微通道散热器用作常规蒸汽压缩循环中的蒸发器,使用R134a作为工作流体。在间接冷却系统中,HFE 7100用于将散热器冷却在初级泵送的液体回路中,该液体回路拒绝热量到二次制冷回路。在这些系统中观察到两个急剧不同的流动行为。由于压缩机性能约束,在R134A系统中遇到了大多数高空隙分数两相模式,以饱和沸腾为主。另一方面,间接制冷冷却系统有利于散热器内部高压沸腾的沸腾。两种系统都被示出为提供重要的冷却效益,但间接冷却系统在散热高热量的情况下更有效。使用该系统的测试产生了高达840W / cm {sup} 2的冷却热通量,而不会产生临界热通量(CHF)。两种系统的结果组合以构建相对于质量速度,过冷,压力和表面张力的性能趋势的总体图。近饱和流动,低质量速度和低压产生“微”行为的极端条件,其中宏观通道流量图案图根本无法施加,不稳定性突出,并且CHF非常低。另一方面,具有高质量速度,高过冷和高压的系统更稳定并产生非常高的CHF值;这些系统中的两相流遵循流体流动和传热行为以及宏通道的流动模式图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号