首页> 外文会议>World biomaterials congress >Mapping convective and diffusive transport in 3D printed vascularized tissues
【24h】

Mapping convective and diffusive transport in 3D printed vascularized tissues

机译:在3D打印的血管化组织中绘制对流和扩散传输

获取原文

摘要

Introduction: 30 printing provides a promising method to establish complex, customizable vascular networks within engineered tissues. Though computational modeling offers unique understanding of essential parameters within complex tissues, few research groups first verify their computational models in vitro or in vivo, a necessary step for using computational models to aid in the design and production of 3D printed tissues.In this work, we begin to verify computational models of 3D printed vascularized tissues to understand the role of vascular architecture in altering the cellular environment. Methods: Using an open-source stereolithography printer developed in our lab, we printed PEG-DA gels containing branched micro-channel networks. To assess convective transport through the channels, we tracked the flow of fluorescent beads using an epiftuorescent microscope and PIVlab software. To map diffusion rates of different sized molecules into the gels, we assessed the transport of fluorescently labeled dextrans (10 kDa and 3 kDa) along with methacrylated rhodamine into the gels. Finally, to assess cell viability following the printing process, we printed gels containing 293T cells transduced to express Luc2P. We then measured the luminescent output of the gels in the presence of luciferin after 5 days in culture. To develop parallel computational models for these gels, we used a 3D model of our printed channel networks to develop computational models for flow and diffusion through the gels (Fig 1). Results and Discussion: Results from bead tracking data for 5 printed gels indicate that average flow rates varied noticeably between channels, with the first and last channels having the highest flow rates (Fig 1). After normalizing the inflow rate of our computational model to that of our printed gels, the computational models corresponded strongly in vitro data (Fig 1). These results show the capability of computational modeling to demonstrate non-obvious flow patterns in 3D printed tissues along with the necessity for in vitro verification. For initial diffusion data, trends show that small molecules diffused rapidly (within 10 min) to distances of 200 μm, while larger dextrans took upwards of 60 min (Fig 2). These results demonstrate the need for improved transport mechanisms to deliver proteins and larger molecules to interstitial cells, possibly through the use of superphysiological flow rates or the addition of capillary networks. Finally, after 5 days in culture, a strong luminescent output was still detected from printed cells, suggesting that cells can survive the initial printing process and may be viable in long term culture. For future work we will compare computational and experimental models for diffusion in printed gels, and will develop computational models for cell viability. With this groundwork, computational models are an invaluable resource in making high throughput optimizations for the design of 3D printed tissues.
机译:简介:30种印刷技术为在工程组织内建立复杂的可定制血管网络提供了一种有前途的方法。尽管计算模型提供了对复杂组织内基本参数的独特理解,但很少有研究小组首先在体外或体内验证其计算模型,这是使用计算模型帮助设计和生产3D打印组织的必要步骤。我们开始验证3D打印血管化组织的计算模型,以了解血管结构在改变细胞环境中的作用。方法:使用我们实验室开发的开源立体平版印刷机,我们印刷了包含分支微通道网络的PEG-DA凝胶。为了评估通过通道的对流传输,我们使用了荧光显微镜和PIVlab软件跟踪了荧光珠的流动。为了绘制不同大小分子在凝胶中的扩散速率,我们评估了荧光标记的葡聚糖(10 kDa和3 kDa)以及甲基丙烯酸罗丹明在凝胶中的转运。最后,为了评估打印过程后的细胞生存力,我们打印了包含转导表达Luc2P的293T细胞的凝胶。然后,我们在培养5天后,在荧光素存在下测量了凝胶的发光输出。为了开发这些凝胶的并行计算模型,我们使用了印刷通道网络的3D模型来开发通过凝胶的流动和扩散的计算模型(图1)。结果与讨论:来自5种印刷凝胶的微珠跟踪数据的结果表明,平均流速在通道之间有显着变化,第一个和最后一个通道的流速最高(图1)。在将我们的计算模型的流入速率标准化为我们的印刷凝胶的流入速率之后,该计算模型强烈对应于体外数据(图1)。这些结果显示了计算建模的能力,以证明3D打印组织中的非明显流动模式以及进行体外验证的必要性。对于初始扩散数据,趋势表明,小分子迅速扩散(在10分钟内)扩散到200μm的距离,而较大的葡聚糖则扩散了60分钟以上(图2)。这些结果表明,可能需要通过使用超生理流速或添加毛细管网络,来改善将蛋白和较大分子传递至间质细胞的运输机制。最后,在培养5天后,仍然从打印的细胞中检测到强发光输出,这表明细胞可以在最初的打印过程中幸存下来,并且在长期培养中可能是可行的。在以后的工作中,我们将比较在印刷凝胶中扩散的计算模型和实验模型,并将开发细胞活力的计算模型。在此基础上,计算模型是为3D打印纸巾设计进行高通量优化的宝贵资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号