首页> 外文会议>World biomaterials congress >Design and simulation of a self-assembling laminin-elastin fusion protein matrix
【24h】

Design and simulation of a self-assembling laminin-elastin fusion protein matrix

机译:自组装层粘连蛋白-弹性蛋白融合蛋白基质的设计与模拟

获取原文

摘要

Introduction: An attractive approach to central nervous system (CNS) tissue regeneration involves the development of biomaterials that mimic ECM features while supporting cell viability and providing suitable topology for controlled organization of tissue. Hydrogels are ideal tissue engineering materials due to their physical similarities to native soft tissues, such as their high water content and mechanical properties. We have designed a functionalized laminin-mimetic elastin-like polypeptide (FLAME) fusion protein that conserves the entire laminin globular domain 5 (LG5) and utilizes elastin-like peptide (ELP) repeat units to modulate the fusion proteins' intra- and intermolecular behavior. Classical, all-atom molecular dynamics (MD) simulations are used to examine the conformationa! and structural dynamics of the engineered FLAME fusion protein. Materials and Methods: The LG5 domain is derived from the c-terminus of the native laminin gamma chain. This domain is responsible for much of the cell-ECM interaction in the CNS, including integrin binding. The ELP is a 8X repeat of (VPGXG) where X is represented by L, I, or K residues. We utilized NAMD on the 6000+ core UVA Rivanna computational cluster. Our simulation system scales well up to 500 cores and thus was run on a parallel queue, with 500 cores for 10 ns, 5,000,000 time steps. NAMD is a well-established and feature-rich MD codebase for simulations of biomolecular systems. NAMD is designed for use on supercomputers, as it requires near-constant neighbor-to-neighbor communication and frequent all-to-all communication. Results and Discussion: FLAME modeled the backbone of the LG antiparallel β-sandwich framework as a rigid body, and treated the ELP sequences attached to the N- and/or C-terminal domain of LG5 as flexible unstructured coils. The ELP sequences remained free of the LG domain under all simulation conditions. We conducted simulations of temperature- and solvent-equilibrated polypepticles at temperatures above the predicted lower critical solution temperature (LCST; Tt = 22°C). The MD trajectories of FLAME (310 K, liquid H2O) enable the frequency of occurrence of secondary structural motifs for each residue in the ELP region to be computed, as shown in Figure 1. The Pro2 and Gly are the most dynamic sites in this peptide, where they predominantly sample canonical type Ⅱ β-tum (Φ = -60°, ψ = 120°) and poly-proline helical (Φ= -75°, ψ= 150°) regions of conformational space. In general, the observed (high) fraction of p-sheet structural content at high temperatures can be attributed to the conformational dynamics of the Pro2, Gly3 and Gly5 residues. As expected, we did not detect any β-sheet formation at 290K, however, residues begin to adopt β-sheet conformations at 310K after 60 ns of simulation. Conclusions: The work presented here relies on atomically-detailed MD simulations to provide a comprehensive, physics-based analysis of the temperature-dependence of both the tertiary and secondary structures of our engineered FLAME protein systems. The developing ELP p-sheet indicates intermolecular assembly will occur. The computational framework serves as a robust and extensible platform for future work (both experimental and computational) toward our overarching goal of synthesizing self-assembling, protein-based biomaterials as stem cell therapeutics.
机译:简介:一种吸引人的中枢神经系统(CNS)组织再生方法涉及开发模仿ECM功能,同时支持细胞生存力并提供合适的拓扑结构以控制组织的生物材料。由于水凝胶与天然软组织的物理相似性(例如高水含量和机械性能),因此它们是理想的组织工程材料。我们设计了功能化的层粘连蛋白模拟弹性蛋白样多肽(FLAME)融合蛋白,该蛋白保留了整个层粘连蛋白球状结构域5(LG5),并利用弹性蛋白样肽(ELP)重复单元来调节融合蛋白的分子内和分子间行为。经典的全原子分子动力学(MD)模拟用于检查构象! FLAME融合蛋白的结构和动力学。材料和方法:LG5结构域衍生自天然层粘连蛋白γ链的c末端。该域负责CNS中许多细胞-ECM相互作用,包括整联蛋白结合。 ELP是(VPGXG)的8X重复,其中X由L,I或K残基表示。我们在6000+核心UVA Rivanna计算集群上使用了NAMD。我们的仿真系统最多可扩展至500个内核,因此在并行队列中运行,具有500个内核,持续10 ns,5,000,000个时间步长。 NAMD是用于生物分子系统模拟的成熟且功能丰富的MD代码库。 NAMD是为在超级计算机上使用而设计的,因为它需要近乎恒定的邻居间通信和频繁的全对所有通信。结果与讨论:FLAME将LG反平行β-三明治框架的骨架建模为刚体,并将连接到LG5 N和/或C末端结构域的ELP序列视为柔性非结构化线圈。在所有模拟条件下,ELP序列均不包含LG域。我们在高于预计的较低临界溶液温度(LCST; Tt = 22°C)的温度下进行了温度和溶剂平衡的多菌灵的模拟。 FLAME(310 K,液态H2O)的MD轨迹使得可以计算ELP区域中每个残基的二级结构基序的出现频率,如图1所示。Pro2和Gly是该肽中最具活力的位点,他们主要在样本Ⅱ型β-肿瘤(Φ= -60°,ψ= 120°)和聚脯氨酸螺旋(Φ= -75°,ψ= 150°)区域构象。通常,在高温下观察到的(高)p-sheet结构含量分数可归因于Pro2,Gly3和Gly5残基的构象动力学。不出所料,我们在290K时未检测到任何β-折叠结构,但是,经过60 ns的模拟,残基在310K时开始采用β-折叠结构。结论:这里提出的工作依赖于原子细节的MD模拟,以提供基于物理的综合分析,以分析我们设计的FLAME蛋白质系统的三级和二级结构的温度依赖性。不断发展的ELP p-sheet表示将发生分子间组装。该计算框架为未来的工作(实验性和计算性)提供了一个强大且可扩展的平台,以实现我们的首要目标,即将自组装,基于蛋白质的生物材料合成为干细胞治疗剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号