首页> 外文会议>World biomaterials congress >Novel aqueous one-pot RAFT process for the rapid and combinatorial synthesis of complex star polymer biomaterial libraries
【24h】

Novel aqueous one-pot RAFT process for the rapid and combinatorial synthesis of complex star polymer biomaterial libraries

机译:新型水一锅法RAFT工艺,用于复杂星形聚合物生物材料库的快速组合合成

获取原文

摘要

Core cross-linked star polymers are of great interest for their potential application in gene and drug delivery or biomaterial building blocks. Devising functional polymeric building blocks for a given biomaterial or biomedical application often requires iterative optimization steps, which is both labour intensive and time consuming. Here we introduce a novel rapid aqueous one-pot arm-first star polymer biomaterial synthesis scheme that yields narrow dispersity stars within only 10 minutes of reaction and requires a single purification step. This novel methodology has been extensively characterized and shown to enable the high throughput generation of complex star polymer biomaterial libraries. The general two-step reaction scheme is shown in Figure 1. Briefly, a solution of acrylamide monomer (Fig. 1b), raft agent (PABTC) and initiator (VA-044) was prepared in D1 water/20% dioxane ([M]:[CTA]:[I] stoichiometry is detailed in Fig. 1a). Using a heat-block, the solution was heated to 100°C for 3-5 minutes to polymerize the macroCTA. To yield star polymers, a solution of cross-linker (di(ethylene glycol)diacrylate) and initiator was directly added to the macroCTA solution and further reacted at 100°C for 3-5 minutes. MacroCTA and star polymers were characterized by NMR, GPC and DLS and could readily be purified by dialysis. Figure 1. Star synthesis, a. Schematic representation of the aqueous one-pot star formation, b. List of acrylamide monomer used for star polymer synthesis. Our reaction scheme is very rapid and star polymers with controlled composition and architecture are yielded within less than 10 minutes with just a few pipetting steps (Fig. 1a). The first step of our reaction scheme typically yields macroCTA with high conversion rate (>90%, NMR). Further reaction at 100°C for 3-5 minutes after the direct addition of cross-linker and initiator readily yielded the controlled formation (D=1.16±0.15) of star polymers as seen in Figure 2. Increased control over the reaction product was achieved with lower initiator concentrations (Fig. 2a). Interestingly, star polymers made of DMA macroCTA displayed biphasic behaviour when the amount of cross-linker per macroCTA was increased while stars from the other monomers display a strong linear correlation (R~2>0.8), as shown by GPC analysis (Fig. 2a). Further characterization showed that the degree of polymerization of the macroCTA strongly affected the average number of arms per star, with stars made from short linear polymers having more arms when compared to those made from longer macroCTAs (Fig. 2b). Next we demonstrated the ability of this scheme to rapidly generate libraries of star polymers; 48 stars were made simultaneously (~10 minutes), as detailed in Figure 2c,d. We extended this scheme to the generation of more complex, combinatorial libraries of mikto-arm sfars, as well as sfars made from various block copolymers. Finally, cross-linking moieties can be directly substituted post-polymerization to the stars pendant ends to permit cross-linking and hydrogel formation through a well-known enzymatic scheme. Figure 2. Characterization of star polymer formation, a. Graphical representation of the GPC characterization of star formation and the effect of initiator concentration, b. Graphical representation of the GPC characterization of star formation and the effect of macroCTA degree of polymerization, c. Graphical representation of the GPC characterization of star polymer library synthesis, d. Graphical representation of the DLS characterization of star polymer library synthesis. In conclusion, the novel methodology presented drastically reduces star polymer reaction time whilst maintaining the typical level of control provided by RAFT polymerization. This process is readily amenable to high throughput discovery and enables rapid complex, combinatorial star polymer library generation to facilitate tailoring biomaterial building blocks for any desired application.
机译:核心交联星形聚合物因其在基因和药物递送或生物材料构建模块中的潜在应用而备受关注。为给定的生物材料或生物医学应用设计功能性聚合物构件通常需要迭代的优化步骤,这既费力又费时。在这里,我们介绍了一种新颖的快速水一锅臂先星形聚合物生物材料合成方案,该方案仅在反应10分钟内即可产生窄分散星,并且只需一个纯化步骤即可。这种新颖的方法已得到广泛表征,并显示出能够以高吞吐量生成复杂的星形聚合物生物材料库。通用的两步反应方案如图1所示。简而言之,在D1水/ 20%二恶烷([M ]:[CTA]:[I]化学计量在图1a)中详细描述。使用加热块,将溶液加热至100°C持续3-5分钟,以使macroCTA聚合。为了产生星形聚合物,将交联剂(二(乙二醇)二丙烯酸酯)和引发剂的溶液直接添加至macroCTA溶液中,并在100℃下进一步反应3-5分钟。 MacroCTA和星形聚合物通过NMR,GPC和DLS进行表征,可以很容易地通过透析纯化。图1.恒星合成一锅水星形形成的示意图,b。用于星形聚合物合成的丙烯酰胺单体列表。我们的反应方案非常快,只需几个移液步骤,即可在不到10分钟的时间内获得具有可控组成和结构的星形聚合物(图1a)。我们反应方案的第一步通常是产生具有高转化率(> 90%,NMR)的macroCTA。如图2所示,直接添加交联剂和引发剂后,在100°C下进一步反应3-5分钟,很容易得到星形聚合物的受控形成(D = 1.16±0.15),如图2所示。具有较低的引发剂浓度(图2a)。有趣的是,由DMA macroCTA制成的星形聚合物显示每相CTA的交联剂数量增加时的双相行为,而其他单体的星形则表现出很强的线性相关性(R〜2> 0.8),如GPC分析所示(图2a)。 )。进一步的表征表明,macroCTA的聚合度强烈影响每颗恒星的平均臂数,与由较长的macroCTA制成的恒星相比,短线性聚合物制成的恒星具有更多的臂。接下来,我们证明了该方案能够快速生成星形聚合物库的能力。如图2c,d所示,同时制作了48颗星(约10分钟)。我们将此方案扩展到生成更复杂的mikto-arm sfars组合库,以及由各种嵌段共聚物制成的sfars。最后,交联部分可以在聚合后直接取代至星形侧链末端,以通过众所周知的酶促方案进行交联和形成水凝胶。图2.星形聚合物形成的表征恒星形成的GPC表征和引发剂浓度的影响的图形表示; b。恒星形成的GPC表征和macroCTA聚合度的影响的图形表示; c。星形聚合物库合成的GPC表征的图形表示; d。星形聚合物库合成的DLS表征的图形表示。总之,提出的新颖方法大大减少了星形聚合物的反应时间,同时保持了RAFT聚合反应提供的典型控制水平。此过程易于进行高通量发现,并能够快速生成复杂的组合星形聚合物库,从而有助于为任何所需应用定制生物材料构建基块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号