首页> 外文会议> >Design, Development and Flight-Testing of a Robotic Hummingbird
【24h】

Design, Development and Flight-Testing of a Robotic Hummingbird

机译:蜂鸟机器人的设计,开发和飞行测试

获取原文

摘要

This paper details the design, development and flight testing of a 62-gram hummingbird-inspired flapping wing micro air vehicle with hovering capability. The key barriers in the development of this vehicle included optimizing the wing design at high flap frequencies by utilizing aeroelastic tailoring to produce the required lift for hover, designing insect-based wing kinematic modulation mechanisms for control and stabilization, utilizing a kinematic autopilot for attitude sensing and vehicle control, and system integration. To achieve the required large flap-stroke amplitudes necessary to generate lift for hover at moderate flap frequencies (~25Hz), a novel mechanical linkage system called a "modified 5-bar" mechanism was developed, which amplifies the output of a standard 4-bar crank-rocker mechanism. Systematic experimental studies were utilized to design lightweight (~0.8 grams) flexible wings and to optimize their performance for a specific operational frequency range. Additionally, a fabrication technique was developed, which ensured the wings could be reproduced with consistency. Control of the vehicle is achieved through the use of wing kinematic modulations, which change two key kinematic parameters: the tilt of the flapping planes relative to the vehicle, and the flapping amplitude. This effectively alters the magnitude and direction of the lift vector of each wing to achieve motion or trim equilibrium in a particular direction. Innovative mechanisms were developed to implement this modulation technique, and these mechanisms are controlled via a kinematic autopilot, which senses the vehicle attitude and, using an on-board closed-loop proportional-derivative controller, transmits corrective signals to the servos to stabilize the vehicle. A systematic approach to tuning the vehicle trim and controller gain values has been implemented, leading to several stable controlled flight experiments. One such flight test lasted ~5.0 seconds in which the vehicle ascended and sustained an altitude of ~1 meter with minimal drift. The final vehicle weighs 62 grams and flaps at about 22Hz during hover.
机译:本文详细介绍了一款具有悬停功能的62克蜂鸟启发式扑翼微型飞机的设计,开发和飞行测试。这款车发展的主要障碍包括:利用气动弹性剪裁产生悬停所需的升力,优化高襟翼频率下的机翼设计;设计用于控制和稳定的基于昆虫的机翼运动学调制机制;利用运动学自动驾驶仪进行姿态感测以及车辆控制和系统集成。为了达到在中等襟翼频率(〜25Hz)下产生悬停所需的升力所需的大襟翼行程振幅,开发了一种新型的机械连杆系统,称为“改良的5杆”机构,可放大标准4连杆的输出。曲柄摇杆机构。系统的实验研究被用来设计轻巧(约0.8克)的柔性机翼,并优化其在特定工作频率范围内的性能。此外,开发了一种制造技术,可确保机翼可以一致地复制。通过使用机翼运动学调制来实现对车辆的控制,该机翼运动学调制改变两个关键的运动学参数:拍打平面相对于车辆的倾斜度和拍打幅度。这有效地改变了每个机翼的升力矢量的大小和方向,以实现在特定方向上的运动或微调平衡。已开发出创新的机制来实现这种调制技术,并且这些机制是通过运动学自动驾驶仪进行控制的,该运动学自动驾驶仪可感测车辆的姿态,并使用车载闭环比例微分控制器将校正信号传输至伺服系统以稳定车辆。已经实施了一种系统的方法来调整车辆的内饰和控制器增益值,从而导致了几次稳定的受控飞行实验。一次这样的飞行测试持续了约5.0秒,其中车辆上升并维持了约1米的高度,并且漂移最小。在悬停过程中,最终的车辆重62克,并以约22Hz的速度拍打襟翼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号