首页> 外文会议>AIAA propulsion and energy forum;AIAA/SAE/ASEE joint propulsion conference >Complex-Lamellar Cyclonic Vortex in a Cylindrical Chamber with a Hollow Core
【24h】

Complex-Lamellar Cyclonic Vortex in a Cylindrical Chamber with a Hollow Core

机译:空心空心圆柱室中的复层流回旋涡

获取原文

摘要

In this work, an exact inviscid solution is introduced for the incompressible Euler equation in the context of a bidirectional, cyclonic vortex in a right-cylindrical chamber with a hollow core. The presence of a gaseous core restricts the flow domain to an annular vortex region that extends into a toroid in three dimensional space. The procedure that we follow is based on the Bragg-Hawthorne framework, which is used in conjunction with a unique assortment of boundary conditions that mirror in large part those entailed in the derivation of a comparably complex-lamellar mean flow profile by Vyas and Majdalani (Vyas, A. B., and Majdalani, J., "Exact Solution of the Bidirectional Vortex," AIAA Journal, Vol. 44, No. 10, 2006, pp. 2208-2216). At the outset, a self-similar solution is retrieved from the Bragg-Hawthorne equation under the premises of steady, axisymmetric, and inviscid conditions, as opposed to the vorticity-streamfunction approach used previously. The resulting formulation is then utilized to describe the bidirectional evolution of the inner and outer vortex motions, including their fundamental properties, such as the interfacial layer known as the mantle, as well as the velocity, pressure, and vorticity fields, with particular attention being devoted to their peak values and spatial excursions that accompany successive expansions of the core radius. By way of confirmation, it is shown that removal of the hollow core restores the well-established solution in a fully flowing cylindrical chamber. Immediate applications of cyclonic flows include liquid and hybrid rocket engines, swirl-driven combustion devices, as well as a multitude of heat exchangers, centrifuges, cyclone separators, and flow separation contraptions that offer distinct advantages over conventional, non-swirling systems.
机译:在这项工作中,在带有空心核的右圆柱室中的双向气旋涡旋的情况下,为不可压缩的欧拉方程引入了精确的无粘性解。气态芯的存在将流域限制在环形涡旋区域,该环形涡旋区域在三维空间中延伸成环形。我们遵循的程序基于Bragg-Hawthorne框架,该框架与独特的边界条件组合使用,该边界条件在很大程度上反映了由Vyas和Majdalani( Vyas,AB和Majdalani,J。,“双向涡旋的精确解”,AIAA杂志,第44卷,第10期,2006年,第2208-2216页)。首先,在稳定,轴对称和无粘性条件的前提下,从Bragg-Hawthorne方程中检索自相似解,这与以前使用的涡流函数方法相反。然后将所得公式用于描述内部和外部涡旋运动的双向演变,包括其基本特性,例如称为地幔的界面层,以及速度,压力和涡度场,尤其要注意的是专注于其峰值和随核心半径连续扩展而发生的空间偏移。通过确认的方式表明,中空芯的移除在完全流动的圆柱形腔室中恢复了已经建立的解决方案。旋风流的直接应用包括液体和混合动力火箭发动机,旋流驱动的燃烧装置,以及大量的热交换器,离心机,旋风分离器和流分离装置,与传统的非旋流系统相比,它们具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号