首页> 外文会议>International Conference on Infrared, Millimeter, and Terahertz Waves >Electrical detection of THz Ramsey interference for orbital transitions in silicon donor impurities
【24h】

Electrical detection of THz Ramsey interference for orbital transitions in silicon donor impurities

机译:太赫兹拉姆西干涉对硅供体杂质中轨道转变的电学检测

获取原文

摘要

Summary form only given. Shallow donor impurities in silicon, once frozen out at low temperature, share many properties in common with free hydrogen atoms [1]. They have long been the subject of spectroscopic investigation, but it is only very recently [2,3] that it has been possible to investigate the time-domain dynamics of orbital excitations such as the 1s to 2p, due to the difficulty of obtaining short, intense pulses in the relevant wavelength range, around 10THz. These new techniques make shallow donors (and also acceptors [4]) attractive for studying atomic physics effects, and for applications in quantum information. We have measured the population dynamics of electrons orbiting around phosphorus impurities in commercially-available silicon, using a free electron laser as the THz source, and shown that the lattice relaxation lifetime is about 200ps, only 1 order of magnitude shorter than the radiative lifetime of free hydrogen. Coherent oscillation, where many particles cycle in phase, is responsible for classical phenomena like the emission of strong radio waves by many individual electrons in an antenna. At the quantum scale, coherent superposition of spin polarisations are central to Magnetic Resonance Imaging and its analogues, in which coherence is excited and then reappears later producing a delayed radio pulse (the spin “echo”). Quantum computer logic will also rely on coherence, and spins are often chosen as “qubits” because they are only weakly connected to, and disturbed by, the environment. Paradoxically, connection with the outside world is crucial for control, making charge (i.e. orbital) oscillations in semiconductors attractive. We have shown that silicon donor electrons can be put into a coherent superposition of orbital states that lasts for nearly as long as the lattice relaxation time [3,5]. The result of sequences of coherent control can also be read out simply using a voltmeter. Our results pave the way for - ew devices where information is stored in single electron orbits (“coherent orbitronics”) in silicon, the material that has dominated the classical computing industry for half a century.
机译:仅提供摘要表格。硅中的浅施主杂质一旦在低温下冻结,便具有许多与自由氢原子共有的特性[1]。长期以来,它们一直是光谱学研究的主题,但直到最近[2,3],由于难以获得短时的影响,才有可能研究轨道激发的时域动力学,例如从1s到2p。 ,在相关波长范围内(约10THz)的强脉冲。这些新技术使浅层的施主(以及受主[4])对研究原子物理效应以及在量子信息中的应用具有吸引力。我们使用自由电子激光作为太赫兹源,测量了市售硅中围绕磷杂质的电子的迁移动力学,结果表明,晶格弛豫寿命约为200ps,仅比硅的辐射寿命短1个数量级。游离氢。相干振荡(其中许多粒子同相循环)是经典现象的原因,例如天线中许多单个电子发出的强无线电波。在量子尺度上,自旋极化的相干叠加是磁共振成像及其类似物的核心,在其中相干被激发,然后重新出现,随后产生延迟的无线电脉冲(自旋“回波”)。量子计算机逻辑也将依赖于相干性,并且自旋通常被选择为“量子位”,因为它们仅与环境紧密相连并受其干扰。矛盾的是,与外部世界的连接对于控制至关重要,这使得半导体中的电荷(即轨道)振荡具有吸引力。我们已经表明,硅供体电子可以置于轨道状态的相干叠加中,持续时间几乎与晶格弛豫时间一样长[3,5]。相干控制序列的结果也可以简单地使用电压表读出。我们的结果为将信息存储在硅中的单电子轨道(“相干双电子”)中的某些设备铺平了道路,硅是在经典计算行业中占主导地位的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号