【24h】

Skolemization for Substructural Logics

机译:次结构逻辑的Skolemization

获取原文

摘要

The usual Skolemization procedure, which removes strong quantifiers by introducing new function symbols, is in general unsound for first-order substructural logics defined based on classes of complete residuated lattices. However, it is shown here (following similar ideas of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-order substructural logics with a semantics satisfying certain witnessing conditions admit a "parallel" Skolemization procedure where a strong quantifier is removed by introducing a finite disjunction or conjunction (as appropriate) of formulas with multiple new function symbols. These logics typically lack equivalent prenex forms. Also, semantic consequence does not in general reduce to satisfiability. The Skolemization theorems presented here therefore take various forms, applying to the left or right of the consequence relation, and to all formulas or only prenex formulas.
机译:通常的Skolemization程序通过引入新的功能符号来删除强量词,对于基于完全残差格的类别定义的一阶子结构逻辑而言,通常是不明智的。但是,这里显示(遵循Baaz和Iemhoff在[1]中对一阶中间逻辑的类似想法),具有满足某些见证条件的语义的一阶子结构逻辑接受“并行” Skolemization过程,其中强量词是通过引入具有多个新功能符号的公式的有限析取或合取来删除。这些逻辑通常缺少等效的前缀结构。而且,语义结果通常不会降低到可满足性。因此,此处介绍的Skolemization定理采用多种形式,适用于结果关系的左侧或右侧,以及所有公式或仅适用于prenex公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号