首页> 外文会议>Conference on ultrafast phenomena and nanophotonics >Ultrafast imaging of plasmons in a transmission electron microscope
【24h】

Ultrafast imaging of plasmons in a transmission electron microscope

机译:透射电子显微镜中等离子体超快成像

获取原文

摘要

Miniaturized plasmonic and photonic integrated circuits are generally considered as the core of future generations of optoelectronic devices, due to their potential to bridge the size-compatibility gap between photonics and electronics. However, as the nanoscale is approached in increasingly small plasmonic and photonic systems, experimentally observing their behavior involves ever more stringent requirements in terms of both temporal and spatial resolution. This talk focuses on the use of time-resolved Photon-Induced Near-Field Electron Microscopy (PINEM) to study the excitation, propagation, (self-)interference and dynamics of surface plasmon polaritons (SPPs) in various plasmonic nanostructures with both nanometer and ultrafast resolution in a transmission electron microscope. Using this field-of-view technique, we directly show how photo-excited plasmonic interference patterns are controlled through the combination of excitation polarization and nanostructure geometry. Moreover, we capture the propagation of the photo-induced self-interfering plasmonic wave, clearly demonstrating the effects of axial confinement in nanostructured plasmonic thin film stacks.
机译:小型化等离子体和光子集成电路通常被认为是未来几代光电器件的核心,这是由于它们弥合了光子和电子产品之间的尺寸兼容性差距的潜力。然而,随着纳米级接近越来越小的等离子体和光子系统,实验观察其行为涉及在时间和空间分辨率方面涉及更严格的要求。该谈话侧重于使用时间分辨的光子诱导的近场电子显微镜(PINEM)来研究各种等离子体纳米结构的激发,传播(自我)干扰和动力学在各种等离子体纳米结构中使用纳米和透射电子显微镜中的超快分辨率。使用场的视这种技术,我们直接显示如何光激发等离激元的干涉图案是通过激发极化和纳米结构的几何形状的组合来控制。此外,我们捕获光诱导的自干式等离子体波的传播,清楚地证明了轴向限制在纳米结构等离子体薄膜叠层中的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号