首页> 外文会议>International astronautical congress >LUNAR SKYLIFT: CABLE OSCILLATIONS AND THEIR TREATMENT
【24h】

LUNAR SKYLIFT: CABLE OSCILLATIONS AND THEIR TREATMENT

机译:卢纳尔·斯基利夫特:缆绳振动及其处理

获取原文

摘要

The lunar elevator concept is a long cable loaded under tension by terrestrial and lunar gravity, with one end anchored on the Moon and the other end free. Such a cable can now be built inexpensively and greatly reduces cislunar transportation costs. A car rolling along the cable expereinces Coriolis force, which excites transverse waves in the cable. This effect has not been studied to date. The wave propagation speed puts a fundamental limit on the car velocity. As in aerodynamics, a sufficiently high speed results in a shock wave in front of the car and eventually rupture of the cable. Even Mach i 1 may generate unacceptable wave amplitudes. Natural damping in the cable is negligibly weak, so repeated runs of the car can bring the cable to prohibitive irregular oscillations. Confining the allowed velocity to a few meters per second is not a solution because it restricts the traffic to a tiny part of the skylift's capability and yet it does not prevent the cable against the extraneous oscillations. This necessitates a technique for active suppression of oscillations. There are few ways to influence the transverse vibrations. The simplest solution is rocket propulsion. A rocket mounted on the car allows easy compensation of its Coriolis acceleration, aC; thus preventing excitation. For Magellan M5 fiber, aC = 1 mm/s2 at Mach =0.5, so a low thrust system with high specific impulse will suffice. However, the total characteristic velocity necessary to compensate Coriolis during a one-way run is 0.5 km/s. It may be too much for regular operation. Other possible solutions are movement of the lower part of the cable in east-west direction, controllable variation of Coriolis force by variation of car velocity a combination of the previous two. The cable is a system with infinite DOF, so synthesis of the control laws is non-trivial. Two methods are used: finite-DOF approximations (e.g. eigenmode decomposition), and the method of Lyapunov's functions, which does not distinguish between the cases of finite and infinite DOF. Along with the semi-analytical study based on eigenmode analysis, a numerical algorithm using finite elements was developed and extensively exercised to test the quality of the proposed control laws.
机译:月球升降机的概念是一根长电缆,在地面和月球重力的作用下承受拉力,一端固定在月球上,另一端自由。这样的电缆现在可以廉价地制造并且大大降低了月牙运输成本。沿电缆滚动的汽车会承受科里奥利力,该力会激发电缆中的横向波。迄今为止,尚未研究这种效果。波的传播速度对轿厢速度有根本的限制。与空气动力学一样,足够高的速度会在汽车前方产生冲击波,并最终导致电缆断裂。即使Mach i 1也会产生不可接受的波幅。电缆中的自然阻尼微弱到可以忽略不计,因此,汽车的反复运行会导致电缆出现异常的不规则振动。将允许的速度限制在每秒几米之内并不是解决方案,因为它将流量限制在举升机能力的一小部分,但却无法防止电缆受到外部振动的影响。这需要用于主动抑制振荡的技术。影响横向振动的方法很少。最简单的解决方案是火箭推进。安装在汽车上的火箭可以轻松补偿其科里奥利加速度aC;从而防止激发。对于麦哲伦M5纤维,马赫数= 0.5时aC = 1 mm / s2,因此具有高比冲的低推力系统就足够了。但是,单向行驶期间补偿科里奥利所需的总特征速度为0.5 km / s。对于常规操作来说可能太多了。其他可能的解决方案是电缆下部沿东西方向移动,通过改变车速来控制科里奥利力的变化以及前两者的组合。电缆是具有无限自由度的系统,因此控制定律的综合并非易事。使用了两种方法:有限DOF逼近(例如本征模分解)和Lyapunov函数的方法,该方法无法区分有限DOF和无限DOF的情况。除了基于本征模分析的半分析研究之外,还开发了一种使用有限元的数值算法,并对其进行了广泛的试验,以检验所提出的控制律的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号