首页> 外文会议>Annual Device Research Conference >Energy scaling of spintronics for information processing #x2014; A new paradigm towards intelligent systems
【24h】

Energy scaling of spintronics for information processing #x2014; A new paradigm towards intelligent systems

机译:自旋电子器件用于信息处理的能量缩放—智能系统的新范例

获取原文

摘要

The talk will first give a brief overview of the energy scaling challenge of today s CMOS and its derivatives, including FINFET, TUNNET, etc. Several potential spintronics devices, which are being pursued by the Nanoelectronics Research Initiative (NRI), along with benchmark efforts will be briefly described.1 Then I will describe the physics and principles as well as advantages and impact of magnetic devices in terms of their low switching energy, high speed, high endurance, and scalability. In particular, the energy dissipation of spin transfer torque (STT) devices will be described for embedded memory applications when benchmarked with scaled CMOS. Recent progress of spin-orbital interactions for the benefit of energy scaling for potential spintronics devices will be discussed, to improve energy efficient switching via polarized spins. In particular, the new discovered engineering of spin-orbit interaction at the interface will be delineated.2'3 Recently, it was shown to possibly use electric fields to control magnetic properties of metallic ferromagnetic layers at the metal/insulator interface. For the latter, we will describe a couple of fundamental mechanisms of voltage control of magnetic moment and direction at the metallic surface. Specifically electric field control of metallic magnetism via engineering of the spin-orbit interactions at the metallic interface will be discussed. This leads to electric-field or voltage controlled magneto-electric (ME) memory (MeRAM)4, resulting in much reduced energy dissipation for switching as well as improved scaling and density. The dynamics of the switching as well as additional physical processes in improving the switching process will be outlined. Additionally the recent progress in using spin Hall effect with high spin orbital metals5 as well as topological insulators will be shown to produce large torque for further reducing energy in switching nanomagnets. En- rgy scaling will be addressed. Further advances are possible by adopting the spin wave bus (SWB) concept — the use of spin waves for logic and interconnect6 as an alternative for CMOS. This SWB along with other related spin based logic devices will be benchmarked against CMOS in terms of energy dissipation. With low energy, high density embedded memory, and spin wave bus, it may be possible to construct a new type of neuromorphic information processing electronics. Spintronic memory may be integrated directly on top of front-end processed CMOS; further on, it is possible to incorporate SWB to enable new generations of nonvolatile instant-on electronics and a new paradigm of intelligent nano-systems.7 Other device possibilities using new materials and their emerging potentials will be discussed.
机译:演讲首先将简要概述当今CMOS及其衍生物(包括FINFET,TUNNET等)在能量缩放方面的挑战。纳米电子研究计划(NRI)正在研究几种潜在的自旋电子器件,并进行基准测试。 1接下来,我将以磁性器件的低开关能量,高速,高耐久性和可扩展性来描述其物理原理,原理以及优点和影响。特别是,当以缩放的CMOS为基准时,将描述自旋传递扭矩(STT)器件的能量耗散,以用于嵌入式存储器应用。将讨论自旋轨道相互作用的最新进展,以改善潜在自旋电子器件的能量规模,以改善通过极化自旋的能效转换。特别是,将描述在界面处自旋轨道相互作用的新发现工程。2'3最近,它被证明可能使用电场来控制金属/绝缘体界面处的金属铁磁层的磁性。对于后者,我们将描述几个控制金属表面磁矩和方向电压的基本机制。将具体讨论通过设计金属界面上的自旋轨道相互作用来控制金属磁性的电场。这导致了电场或电压控制的磁电(ME)存储器(MeRAM)4,从而大大降低了开关的能耗,并提高了缩放比例和密度。将概述交换的动态以及改进交换过程中的其他物理过程。此外,在自旋霍尔效应与高自旋轨道金属5以及拓扑绝缘体结合使用方面的最新进展将显示出产生大扭矩的作用,以进一步降低开关纳米磁铁时的能量。能量缩放将得到解决。通过采用自旋波总线(SWB)概念,进一步的发展是可能的-将自旋波用于逻辑和互连6作为CMOS的替代方案。该SWB以及其他相关的基于自旋的逻辑器件将在功耗方面以CMOS为基准。利用低能量,高密度嵌入式存储器和自旋波总线,可能有可能构建一种新型的神经形态信息处理电子设备。 Spintronic存储器可以直接集成在前端处理的CMOS顶部;进一步,可以将SWB并入以实现新一代非易失性即时接通电子设备和智能纳米系统的新范例。7将讨论使用新材料及其新兴潜力的其他设备可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号