首页> 外文会议>Joint AIAA/ASME thermophysics and heat transfer conference;AIAA aviation forum >Comprehensive Uncertainty Analysis of Mars Entry Flows over Hypersonic Inflatable Atmospheric Decelerators
【24h】

Comprehensive Uncertainty Analysis of Mars Entry Flows over Hypersonic Inflatable Atmospheric Decelerators

机译:高超声速充气减速器火星进入流的综合不确定性分析

获取原文

摘要

A comprehensive uncertainty analysis for high-fidelity flowfield simulations over a Hypersonic Inflatable Atmospheric Decelerator for Mars entry is presented for fully laminar and turbulent flows. The current study implements a sparse-collocation approach for efficient and accurate uncertainty quantification in the high-fidelity numerical modeling of hypersonic reentry flow simulations, which may contain large numbers of aleatory and epistemic uncertainties. The mixed uncertainty quantification results show that the computational cost can be reduced by at least 80% compared to the sample requirements for constructing a total order stochastic expansion. The aerodynamic heating (both convective and radiative) and wall pressure uncertainties are computed and shown to vary due to a small fraction of 65 flowfield and radiation modeling parameters considered. The main contributors to the convective heating uncertainty near the stagnation point are the CO_2-CO_2, CO_2-O, and CO-O binary collision interactions, freestream density, and freestream velocity for both boundary layer flows. In laminar flow, exothermic recombination reactions are more important at the shoulder. The radiative heating and 'wall pressure uncertainties were shown to have consistent contribution for both boundary layer flows. The main contributors to the radiative heating uncertainty were the CO_2 dissociation rate and CO_2-O exchange rate due to the strongly-emitting CO_2 ultraviolet band at peak stagnation-point heating. The freestream density variation dominates the uncertainty in the wall pressure.
机译:针对全层流和湍流,提出了用于火星进入的高超音速可充气大气减速器的高保真流场模拟的综合不确定性分析。当前的研究在高超声速折返流模拟的高保真数值模拟中实现了一种稀疏配置方法,以进行高效,准确的不确定性量化,其中可能包含大量的不确定性和认识论不确定性。混合不确定性量化结果表明,与构建总阶随机扩展的样本需求相比,计算成本至少可降低80%。计算了空气动力学加热(对流和辐射)和壁面压力的不确定性,并显示出由于65个流场的一小部分和考虑的辐射建模参数而变化的结果。滞流点附近对流加热不确定性的主要因素是两个边界层流的CO_2-CO_2,CO_2-O和CO-O二元碰撞相互作用,自由流密度和自由流速度。在层流中,放热重组反应在肩部更为重要。结果表明,辐射加热和壁压力的不确定性对两个边界层流都具有一致的贡献。导致辐射加热不确定性的主要因素是由于峰值驻点加热时强烈发射的CO_2紫外线带导致的CO_2分解速率和CO_2-O交换速率。自由流密度变化控制着壁压力的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号