首页> 外文会议>AIAA flow control conference;AIAA aviation forum >A Nonlinear Adaptive Method for Microjet-Based Flow Separation Control
【24h】

A Nonlinear Adaptive Method for Microjet-Based Flow Separation Control

机译:基于微喷流分离控制的非线性自适应方法

获取原文

摘要

For airborne air-breathing systems, flow separation is a critical factor in efficiency, ease of piloting, and performance capability. Flow separation, or stall, leads to increased drag, decreased lift, and unpredictable vibrations due to unsteadiness. Small aerial vehicle flight is one such application. On these systems, effective control of stall could provide greater maneuverability and performance, and lessened vibration during optical image capture. Separated flow is a macro-scale phenomenon and is governed by complex flow interactions but can be controlled by micro-scale actuation. For many decades, passive control methods such as vortex generators and surface roughness have been designed to mitigate separation under conditions of steady, design-point operation. Not until recently, however, has the emergence of closed loop methods enabled control of separation that is able to respond as flow conditions change. Advances in microprocessor technology have now enabled the use of sophisticated adaptive control methods that achieve separation control with linear time-varying models. While adaptive control methods have improved upon passive and open-loop techniques for steady operation, nonlinear adaptive control has yet to be demonstrated for the dynamic flow conditions of agile flight. Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), a novel approach to nonlinear Model Predictive Control, is presented. Adaptive SBMPC applies the Minimal Resource Allocation Network algorithm for nonlinear system identification and the Sampling Based Model Predictive Optimization algorithm to achieve effective feedback control of flow separation. By introducing a computationally efficient nonlinear approach to the adaptive control of separation, this research experimentally demonstrates real time control of flow separation for a range of flow conditions.
机译:对于机载空气呼吸系统,流量分离是效率,驾驶便利性和性能的关键因素。由于不稳定,流分离或失速会导致阻力增加,升力降低以及不可预测的振动。小型飞行器飞行就是这样的一种应用。在这些系统上,对失速的有效控制可以提供更大的机动性和性能,并减少光学图像捕获期间的振动。分离流是一种宏观现象,受复杂的流相互作用控制,但可以通过微观驱动来控制。几十年来,人们一直在设计无源控制方法,例如涡流发生器和表面粗糙度,以减轻稳定的设计点操作条件下的分离。然而,直到最近,闭环方法的出现才使得能够控制分离,该分离能够随着流动条件的变化而做出响应。现在,微处理器技术的进步使得能够使用复杂的自适应控制方法,该方法通过线性时变模型实现分离控制。尽管自适应控制方法已经在被动和开环技术的基础上进行了改进,以实现稳定运行,但对于敏捷飞行的动态流动条件,非线性自适应控制尚未得到证明。提出了一种基于自适应采样的模型预测控制(Adaptive SBMPC),它是一种非线性模型预测控制的新方法。自适应SBMPC应用最小资源分配网络算法进行非线性系统识别,并使用基于采样的模型预测优化算法来实现对流分离的有效反馈控制。通过将一种计算有效的非线性方法引入到分离的自适应控制中,本研究实验证明了在一定范围的流动条件下,对分离进行实时控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号