首页> 外文会议>ASME joint US-European Fluids Engineering Division summer meeting >Experimental and Numerical Investigation into Turbulent High Reynolds Number Flows Through a Square Duct with 90-Degree Streamwise Curvature - Ⅱ Numerical Methods
【24h】

Experimental and Numerical Investigation into Turbulent High Reynolds Number Flows Through a Square Duct with 90-Degree Streamwise Curvature - Ⅱ Numerical Methods

机译:90度流向曲率的湍流高雷诺数流经方管的实验和数值研究-Ⅱ数值方法

获取原文

摘要

A square duct with a 90-degree streamwise curvature is representative of complex flow domains. Such flow domains are encountered in the designs of fluids engineering systems, especially in the aerospace turbo-machinery components. Examples include the gas turbine engine axial compressor interstage spaces, where the rise in air pressure (and hence compressor efficiency) is dependent on suppression of turbulence. In the case of the centrifugal compressor, pressure rise in the U-shaped diffuser assembly where the suppression of turbulence is critical to the attainable pressure ratio. The results obtained from numerical calculations are analysed and discussed along with the corresponding hot-wire measurements and flow visualization result from a wind-tunnel of identical configuration. Calculations are implemented in four turbulent models, i.e. Standard k-e Module, Algebraic Stress Model (ASM), Non-linear Renormalization Group (RNG) - k-e Model and Differential Stress Model (DSM). The discretization up-winding scheme is the Quadratic Up-winding with Interpolation Kinematics (QUICK). Two high Reynolds number turbulent flows are investigated, with mainstream velocities of 12.3 m/s and 20.4 m/s, representing Re=3.56×10~5 and Re=6.43×10~5 respectively. Generally strong correlation between theory and experimental data are recorded. Further, as reported in similar studies, the turbulence modules that are formulated to account for turbulence anisotropy return results that more closely match experimental measurements. Uniquely for this configuration, a massive flow detachment is predicted along the convex wall at about the 90° position. Also, the core of the fluid flow is observed to shift from the outer to the inner areas of the bend in proportion to the secondary (recirculating) flow generated by the bend.
机译:流向弯曲度为90度的方管代表了复杂的流域。在流体工程系统的设计中,尤其是在航空航天涡轮机械部件中,会遇到这样的流域。例子包括燃气涡轮发动机轴向压缩机级间空间,其中空气压力的上升(以及因此压缩机效率)的上升取决于湍流的抑制。在离心压缩机的情况下,U形扩散器组件中的压力升高,在这种情况下,湍流的抑制对于可达到的压力比至关重要。分析和讨论了从数值计算获得的结果,以及来自相同配置的风洞的相应热线测量和流量可视化结果。在四个湍流模型中执行计算,即标准k-e模块,代数应力模型(ASM),非线性重归一化组(RNG)-k-e模型和微分应力模型(DSM)。离散向上缠绕方案是带插值运动学的二次向上缠绕(QUICK)。研究了两种高雷诺数湍流,主流速度分别为12.3 m / s和20.4 m / s,分别代表Re = 3.56×10〜5和Re = 6.43×10〜5。通常记录理论和实验数据之间的强相关性。此外,如在类似的研究中所报道的那样,为解决湍流各向异性返回结果而制定的湍流模块与实验测量结果更加接近。对于此配置而言,独特的是,预计在大约90°的位置沿着凸壁会出现大量的流分离。同样,观察到流体流的核心与弯头产生的二次(再循环)流成比例地从弯头的外部向内部移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号