首页> 外文会议>Annual IEEE/ACM International Symposium on Microarchitecture >Tribeca: Design for PVT Variations with Local Recovery and Fine-grained Adaptation
【24h】

Tribeca: Design for PVT Variations with Local Recovery and Fine-grained Adaptation

机译:Tribeca:用于局部恢复和细粒度适应性的PVT变化设计

获取原文
获取外文期刊封面目录资料

摘要

With continued advances in CMOS technology, parameter variations are emerging as a major design challenge. Irregularities during the fabrication of a microprocessor and variations of voltage and temperature during its operation widen worst-case timing margins of the design - degrading performance significantly. Because runtime variations like supply voltage droops and temperature fluctuations depend on the activity signature of the processor's workload, there are several opportunities to improve performance by dynamically adapting margins. This paper explores the power-performance efficiency gains that result from designing for typical conditions while dynamically tuning frequency and voltage to accommodate the runtime behavior of workloads. Such a design depends on a fail-safe mechanism that allows it to protect against margin violations during adaptation; we evaluate several such mechanisms, and we propose a local recovery scheme that exploits spatial variation among the units of the processor. While a processor designed for worst-case conditions might only be capable of a frequency that is 75% of an ideal processor with no parameter variations, we show that a fine-grained global frequency tuning mechanism improves power-performance efficiency (BIPS~3/W) by 40% while operating at 91% of an ideal processor's frequency. Moreover, a per-unit voltage tuning mechanism aims to reduce the effect of within-die spatial variations to provide a 55% increase in power-performance efficiency. The benefits reported are clearly substantial in light of the <1% area overhead relative to existing global recovery mechanisms.
机译:随着CMOS技术的持续进步,参数变化是出现作为主要设计挑战的态度。在制造微处理器期间的不规则性以及其操作过程中的电压和温度的变化拓宽了设计 - 降低性能的最坏情况的最坏情况。由于运行时变化如电源电压嗡嗡声和温度波动取决于处理器工作量的活动签名,因此通过动态调整边距,有几个能够提高性能。本文探讨了在动态调谐频率和电压时设计典型条件的功率性能效率增益,以适应工作负载的运行时行为。这种设计取决于失效安全机制,使其能够在适应期间防止违规的保证金;我们评估了几种这样的机制,我们提出了一种局部恢复方案,该方案利用处理器单元之间的空间变化。虽然专为最坏情况条件设计的处理器可能只能能够频率为75%的理想处理器,但没有参数变化,我们表明,细粒度的全局调谐机制提高了功率性能效率(BIPS〜3 / w)在理想的处理器频率的91%上运行40%。此外,每单位电压调谐机构旨在降低模芯内空间变化的效果,以提供55%的功率性能效率提高。报告的益处鉴于相对于现有的全球恢复机制的1%面积开销是明显的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号